Skip to main content

Developmental Plasticity and Heterokairy

  • Chapter
  • First Online:
Development and Environment

Abstract

There is a resurgence of interest in using phenotypic plasticity, ‘the environmentally sensitive production of alternative phenotypes by given genotypes’, as a framework in the study of evolutionary biology. The term developmental plasticity describes a more specific strand of investigation dealing with how alterations to developmental processes and outcomes shape such environmentally induced variation. Nested within developmental plasticity is the notion of heterokairy, the potential of a single genotype to alter the timing of a developmental event (e.g. onset of a particular structure, function or components of that function), in response to an environmental signal or influence. Here we make a case for using the term heterokairy as a way of focusing on altered timing across different biological disciplines, and we suggest a road map for such an approach. Heterokairy as an interdisciplinary term could be used to (a) bring together the substantial knowledge currently available of environmentally sensitive, genetic and hormonal control of the timing of developmental transitions, (b) embed the study of altered timing of developmental events within developmental plasticity and (c) highlight the role that plasticity can play in adaptive evolution, particularly in response to global environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolph EF (1968) Origins of physiological variation. Academic Press, New York

    Google Scholar 

  • Arnqvist G, Johansson F (1998) Ontogenetic reaction norms of predator-induced defensive morphology in dragonfly larvae. Ecology 79:1847–1858

    Google Scholar 

  • Arthur W (2004) Biased embryos and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Atchley WR, Zhu J (1997) Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics 147:765–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc B Biol Sci 277:503–511

    Google Scholar 

  • Bagatto B (2005) Ontogeny of cardiovascular control in zebrafish (Danio rerio): effects of developmental environment. Comp Biochem Physiol A Mol Integr Physiol 141:391–400

    PubMed  Google Scholar 

  • Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE (2004) Developmental plasticity and human health. Nature 430:419–421

    CAS  PubMed  Google Scholar 

  • Bateson P, Gluckman P (2011) Plasticity, robustness, development and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    PubMed  Google Scholar 

  • Bavis RW, Young KM, Barry KJ, Boller MR, Klein PM, Ovrutsky AR, Rampersad DA (2010) Chronic hyperoxia alters the early and late phases of the hypoxic ventilatory response in neonatal rats. J Appl Physiol 109:796–803

    PubMed  PubMed Central  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    PubMed  PubMed Central  Google Scholar 

  • Benard MF (2015) Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing. Glob Chang Biol 21:1058–1065

    PubMed  Google Scholar 

  • Black JL, Burggren WW (2004) Acclimation to hypothermic incubation in developing chicken embryos (Gallus domesticus). J Exp Biol 207:1543–1552

    PubMed  Google Scholar 

  • Blacker HA, Orgeig S, Daniels CB (2004) Hypoxia control of the development of the surfactant system in the chicken: evidence for physiological heterokairy. Am J Physiol Regul Integr Comp Physiol 287:R403–R410

    CAS  PubMed  Google Scholar 

  • Bradshaw WE (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2010) Light, time, and the physiology of biotic response to rapid climate change in animals. Annu Rev Physiol 72:147–166

    CAS  PubMed  Google Scholar 

  • Burggren WW (1992) The importance of an ontogenic perspective in physiological studies: amphibian cardiology as a case study. In: Wood SC, Weber R, Hargens A, Millard R (eds) Physiological adaptations in vertebrates: respiration, circulation and metabolism. Dekker, New York, pp 235–253

    Google Scholar 

  • Burggren WW (1998) Studying physiological development: past, present and future. Biol Bull Nat Taiwan Normal Univ 33:71–84

    Google Scholar 

  • Burggren WW (2000) Developmental physiology, animal models, and the August Krogh principle. Zoology 102:148–156

    Google Scholar 

  • Burggren WW (2005) Developing animals flout assumptions of ecological physiology. Comp Biochem Physiol A Mol Integr Physiol 141:430–439

    PubMed  Google Scholar 

  • Burggren WW (2006) Complexity change during physiological development. In: Warburton S, Burggren W, Pelster B, Reiber CL, Spicer JI (eds) Comparative developmental physiology: contributions, tools and trends. Oxford University Press, Oxford, pp 174–190

    Google Scholar 

  • Burggren WW, Bemis T (1990) Studying physiological evolution: paradigms and pitfalls. In: Nltecki MH (ed) Evolutionary innovations: patterns and processes. Oxford University Press, Oxford, pp 191–228

    Google Scholar 

  • Burggren WW, Just JJ (1992) Developmental changes in amphibian physiological systems. In: Feder ME, Burggren WW (eds) Environmental physiology of the Amphibia. University of Chicago Press, Chicago, pp 467–530

    Google Scholar 

  • Burggren WW, Reyna KS (2011) Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 178:13–21

    PubMed  Google Scholar 

  • Burggren WW, Warburton S (2005) Comparative developmental physiology: an interdisciplinary convergence. Annu Rev Physiol 67:203–223

    CAS  PubMed  Google Scholar 

  • Cleland EE, Allen JM, Crimmin TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012) Phenological tracking enables positive species responses to climate change. Ecology 93:1765–1771

    PubMed  Google Scholar 

  • Collin R, Roof KE, Spangler A (2016) Hatching plasticity in the tropical gastropod Nerita scabricosta. Invertebr Biol 135:87–96

    Google Scholar 

  • Corse E, Neve G, Sinama M, Pech N, Costedoat C, Chappaz R, Gilles A (2012) Plasticity of ontogenetic trajectories in cyprinids: a source of evolutionary novelties. Biol J Linn Soc 106:342–355

    Google Scholar 

  • Crispo E (2007) The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–2479

    PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • De Jong IML, Colbert MW, Witte F, Richardson MK (2009) Polymorphism in developmental timing: intraspecific heterochrony in a Lake Victoria cichlid. Evol Dev 11:625–635

    PubMed  Google Scholar 

  • De Smit L, Bruggeman DV, Tona JK, Debonne M, Onagbesan O, Arckens L, De Baerdemaeker J, Decuypere E (2006) Embryonic developmental plasticity of the chick: increased CO2 during early stages of incubation changes the developmental trajectories during prenatal and postnatal growth. Comp Biochem Physiol A Mol Integr Physiol 145:166–175

    PubMed  Google Scholar 

  • De Witt TJ (2016) Expanding the phenotypic plasticity paradigm to broader views of trait space and ecological function. Curr Zool 62:463–473

    Google Scholar 

  • DeWitt TJ, Scheiner SM (eds) (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, Oxford

    Google Scholar 

  • Dimichele L, Taylor MH (1980) The environmental control of hatching in Fundulus heteroclitus. J Exp Zool 214:181–187

    Google Scholar 

  • Drost HG, Janitza P, Grosse I, Quint M (2017) Cross-kingdom comparison of the developmental hourglass. Curr Opin Genet Dev 45:69–75

    CAS  PubMed  Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295:R704–R713

    CAS  PubMed  Google Scholar 

  • Faunes F, Larraín J (2016) Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol 416:3–17

    CAS  PubMed  Google Scholar 

  • Feder MA, Bennett AF, Burggren WW, Huey RB (eds) (1987) New directions in ecological physiology. Cambridge University Press, New York

    Google Scholar 

  • Feder MA, Bennett AF, Huey RB (2000) Evolutionary physiology. Annu Rev Ecol Syst 31:315–341

    Google Scholar 

  • Forrest J, Miller-Rushing AJ (2010) Towards a synthetic understanding of the role of phenology in ecology and evolution. Philos Trans R Soc B 365:3101–3112

    Google Scholar 

  • Forsman A (2015) Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115:276–284

    CAS  PubMed  Google Scholar 

  • Forward RB, Tankersley RA, Rittschof D (2001) Cues for metamorphosis of brachyuran crabs: an overview. Am Zool 41:1108–1122

    Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B 365:547–556

    Google Scholar 

  • Garland T Jr, Carter PA (1994) Evolutionary physiology. Annu Rev Physiol 56:579–621

    PubMed  Google Scholar 

  • Gebauer P, Paschke K, Anger K (2003) Delayed metamorphosis in decapod crustaceans: evidence and consequences. Rev Chil Hist Nat 76:169–175

    Google Scholar 

  • Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525:372–375

    CAS  PubMed  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Google Scholar 

  • Gomez-Mestre I, Buchholz DR (2006) Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proc Natl Acad Sci U S A 103:19021–19026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap, Cambridge

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    CAS  PubMed  Google Scholar 

  • Harvey W (1628) An anatomical disputation concerning the movement of the heart and blood in living creatures. Translated by Whitteridge G (1976). Blackwell, Oxford

    Google Scholar 

  • Heyland A, Hodin J (2004) Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development. Evolution 58:524–538

    CAS  PubMed  Google Scholar 

  • Hjelm J, Svanbäck R, Byström P, Persson L, Wahlström E (2001) Diet-dependent body morphology and ontogenetic reaction norms in Eurasian perch. Oikos 95:311–323

    Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    CAS  PubMed  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA (eds.)]. IPCC, Geneva, p 151

    Google Scholar 

  • Jones WHS (1931) Hippocrates volume IV on the Universe by Heraclitus. Loebe Classical Library

    Google Scholar 

  • Keyte AL, Smith KK (2014) Heterochrony and developmental timing mechanisms: changing ontogenies in evolution. Semin Cell Dev Biol 34:99–107

    PubMed  Google Scholar 

  • Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2014) Does evolutionary theory need a rethink? Nature 514:161–164

    CAS  PubMed  Google Scholar 

  • Le Rouzic A, Carlborg Ö (2008) Evolutionary potential of hidden genetic variation. Trends Ecol Evol 23:33–37

    PubMed  Google Scholar 

  • Loman J (2009) Primary and secondary phenology. Does it pay a frog to spawn early? J Zool (Lond) 279:64–70

    Google Scholar 

  • Longo LD (2013) The rise of fetal and neonatal physiology. Basic science to clinical care. Perspectives in Physiology, vol 1. Springer, New York

    Google Scholar 

  • Martin K, Bailey K, Moravek C, Carlson K (2011) Taking the plunge: Californian grunion embryos emerge rapidly with environmentally cued hatching. Integr Comp Biol 51:26–37

    PubMed  Google Scholar 

  • Martin KL (1999) Ready and waiting: delayed hatching and extended incubation of anamniotic vertebrate terrestrial eggs. Am Zool 39:279–288

    Google Scholar 

  • Mateus ARA, Narques-Pita M, Oostra V, Lafuente E, Brakefield PM, Zwaan BJ, Beldade P (2014) Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. BMC Biol 12:97

    PubMed  PubMed Central  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    CAS  Google Scholar 

  • McCormick SD (2009) Evolution of the hormonal control of animal performance: insights from the seaward migration of salmon. Integr Comp Biol 49:408–422

    PubMed  Google Scholar 

  • McCormick SD (2013) Smolt physiology and endocrinology. Fish Physiol 32:199–251

    Google Scholar 

  • McCormick SD, Saunders RI (1987) Preparatory physiological adaptations for marine life in salmonids: osmoregulation, growth and metabolism. Am Fish Soc Symp 1:211–229

    Google Scholar 

  • Mendez-Sachez JF, Burggren W (2012) Modulation of the onset of air-breathing of the Siamese fighting fish and the blue gourami. FASEB J 31:1071–1079

    Google Scholar 

  • Mendez-Sanchez JF, Burggren W (2014) Environmental modulation of the onset of air-breathing and survival of Betta splendens and Trichopodus trichopterus. J Fish Biol 84:794–807

    CAS  PubMed  Google Scholar 

  • Miller-Rushing AJ, Høye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans R Soc B 365:3177–3186

    Google Scholar 

  • Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc Lond B Biol Sci 278:2705–2713

    Google Scholar 

  • Monaghan P, Haussmann MF (2015) The positive and negative consequences of stressors during early life. Early Hum Dev 91:643–647

    PubMed  PubMed Central  Google Scholar 

  • Moravek CL, Martin K (2011) Life goes on: delayed hatching, extended incubation, and heterokairy in development of embryonic California grunion, Leuresthes tenuis. Copeia 2011:308–314

    Google Scholar 

  • Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17:R425–R434

    CAS  PubMed  Google Scholar 

  • Mourabit S, Rundle SD, Spicer JI, Sloman KA (2010) Alarm substance from adult zebrafish alters early embryonic development in offspring. Biol Lett 6:525–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD (2015) Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A Mol Integr Physiol 184:113–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muratori FB (2010) Heterokairy as an anti-predator strategy for parasitic species. Commun Integr Biol 3:309–312

    PubMed  PubMed Central  Google Scholar 

  • Muratori FB, Borlee S, Messing RH (2010) Induced niche shift as an anti-predator response for an endoparasitoid. Proc R Soc Lond B Biol Sci 277:1475–1480

    Google Scholar 

  • Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H et al (2015) Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115:293–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Needham J (1933) On the dissociability of the fundamental processes in ontogenesis. Biol Rev 8:180–223

    Google Scholar 

  • Noble D, Jablonka E, Joyner MJ, Müller GB, Omholt SW (2014) Evolution evolves: physiology returns to centre stage. J Physiol 592:2237–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orgeig S, Daniels CB (2009) Environmental selection pressures shaping the pulmonary surfactant system of adult and developing lungs. In: Glass ML, Wood SC (eds) Cardio-respiratory control in vertebrates. Springer, Berlin, pp 205–239

    Google Scholar 

  • Oyarzun FX, Strathmann RR (2011) Plasticity of hatching and the duration of planktonic development in marine invertebrates. Integr Comp Biol 51:81–90

    PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Pechenik JA (1990) Delayed metamorphosis by larvae of benthic marine invertebrates: does it occur? Is there a price to pay? Ophelia 32:63–94

    Google Scholar 

  • Pecl GT, Araujo MB, Bell J, Blanchard J, Bonebrake TC, Chen I, Clark TD, Colwell RK, Danielsen F, Evengard B, Robinson S et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:1–9

    Google Scholar 

  • Pedersen S, Berg PR, Culling M, Danzmann RG, Glebe B, Leadbetter S, Lien S, Moen T, Vandersteen W, Boulding EG (2013) Quantitative trait loci for precocious parr maturation, early smoltification, and adult maturation in double-backcrossed trans-Atlantic salmon (Salmo salar). Aquaculture 410-411:164–171

    CAS  Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233

    Google Scholar 

  • Pigliucci M (1998) Developmental phenotypic plasticity: where internal programming meets external environment. Curr Opin Plant Biol 1:87–91

    CAS  PubMed  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philos Trans R Soc B 365:557–566

    CAS  Google Scholar 

  • Pigliucci M, Müller GB (2010) Evolution: the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    PubMed  Google Scholar 

  • Pigliucci M, Schlichting CD (1995) Ontogenetic reaction norms in Lobelia siphilitica (Lobeliaceae): response to shading. Ecology 76:2134–2144

    Google Scholar 

  • Pilgliucci M, Schlichting CD, Jones CS, Schwenk K (1996) Developmental reaction norms: the interactions among allometry, ontogeny and plasticity. Plant Species Biol 11:69–85

    Google Scholar 

  • Podrabsky JE, Romney AL, Culpepper KM (2016) Alternative developmental pathways. In: Berois N, García G, de Sá RO (eds) Annual fishes. Life history strategy, diversity and evolution. CRC Press, Taylor & Francis Group, Boca Raton, pp 63–74

    Google Scholar 

  • Poe S (2004) A test for patterns of modularity in sequences of developmental events. Evolution 58:1852–1855

    PubMed  Google Scholar 

  • Polin RA, Fox WW, Abman SH (2011) Fetal and neonatal physiology (2 volumes). Saunders, Elsevier, Philadelphia

    Google Scholar 

  • Poullet N, Vielle A, Gimond C, Carvalho S, Teotónio H, Braendle C (2016) Complex heterochrony underlies the evolution of Caenorhabditis elegans hermaphrodite sex allocation. Evolution 70:2357–2369

    PubMed  Google Scholar 

  • Price TC, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc B 270:1433–1440

    PubMed  PubMed Central  Google Scholar 

  • Raff EC, Raff RA (2000) Dissociability, modularity, evolvability. Evol Dev 2:235–237

    CAS  PubMed  Google Scholar 

  • Raff RA, Kaufman TC (1983) Embryos, genes and evolution. MacMillan, New York

    Google Scholar 

  • Raff RA, Wray GA (1989) Heterochrony: developmental mechanisms and evolutionary results. J Evol Biol 2:409–434

    Google Scholar 

  • Raff RR (1992) Direct-Developing Sea urchins and the evolutionary reorganisation of early development. BioEssays 14:211–218

    CAS  PubMed  Google Scholar 

  • Riedl R (1978) Order in living systems: a systems analysis of evolution. Wiley, New York

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    CAS  PubMed  Google Scholar 

  • Rougvie AE (2005) Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues. Development 132:3787–3798

    CAS  PubMed  Google Scholar 

  • Rudin-Bitterli TS, Spicer JI, Rundle SD (2016) Differences in the timing of cardio-respiratory development determine whether marine gastropod embryos survive or die in hypoxia. J Exp Biol 219:1076–1085

    PubMed  Google Scholar 

  • Rudolf VHW, Singh M (2013) Disentangling climate change effects on species interactions: effect of temperature, phenological shifts, and body size. Oecologia 173:1043–1052

    PubMed  Google Scholar 

  • Rundle SD, Smirthwaite JJ, Colbert MW, Spicer JI (2011) Predator cues alter the timing of developmental events in gastropod embryos. Biol Lett 7:285–287

    PubMed  Google Scholar 

  • Rundle SD, Spicer JI (2017) Heterokairy: a significant form of developmental plasticity? Biol Lett 12:20160509

    Google Scholar 

  • Russell GA, Rezende EL, Hammond KA (2008) Development partly determines the aerobic performance of adult deer mice, Peromyscus maniculatus. J Exp Biol 211:35–41

    PubMed  Google Scholar 

  • Sakamoto T, McCormick SD, Hirano T (1993) Osmoregulatory actions of growth hormone and its mode of action in salmonids: a review. Fish Physiol Biochem 11:155–164

    CAS  PubMed  Google Scholar 

  • Sarkar S (2004) From the Reaktionsnorm to the evolution of adaptive plasticity: a historical sketch, 1909-1999. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, Oxford, pp 10–30

    Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland

    Google Scholar 

  • Scoville AG, Pfrender ME (2010) Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Natl Acad Sci U S A 107:4260–4263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sikkink KL, Reynolds RM, Tuarte CM, Cresko WA, Phillips C (2014) Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. Genes Genomes Genet 4:1103–1112

    CAS  Google Scholar 

  • Sloan AW (1978) William Harvey, physician and scientist. S Afr Med J 54:247–252

    CAS  PubMed  Google Scholar 

  • Spicer JI (1995) Ontogeny of respiratory function in crustaceans exhibiting either direct or indirect development. J Exp Zool 272:413–418

    Google Scholar 

  • Spicer JI (2006) A physiological approach to heterochrony. In: Warburton S, Burggren W, Pelster B, Reiber CL, Spicer JI (eds) Comparative developmental physiology: contributions, tools and trends. Oxford University Press, New York, pp 191–202

    Google Scholar 

  • Spicer JI, Burggren WW (2003) Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106:91–99

    PubMed  Google Scholar 

  • Spicer JI, El-Gamal MM (1999) Hypoxia accelerates the development of respiratory regulation in brine shrimp – but at a cost. J Exp Biol 202:3637–3646

    PubMed  Google Scholar 

  • Spicer JI, Eriksson SP (2003) Does the development of respiratory regulation always accompany the transition from pelagic larvae to benthic fossorial postlarvae in the Norway lobster Nephrops norvegicus (L)? J Exp Mar Biol Ecol 295:219–243

    Google Scholar 

  • Spicer JI, Rundle SD (2006) Out of place and out of time – towards a more integrated approach to heterochrony. Anim Biol 56:487–502

    Google Scholar 

  • Spicer JI, Rundle SD (2007) Plasticity in the timing of physiological development: physiological heterokairy – what is it, how frequent is it, and does it matter? Comp Biochem Physiol A Mol Integr Physiol 148:712–719

    PubMed  Google Scholar 

  • Spicer JI, Rundle SD, Tills O (2011) Studying the altered timing of physiological events during development: it’s about time…or is it? Respir Physiol Neurobiol 178:3–12

    PubMed  Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity. Bioscience 39:436–445

    Google Scholar 

  • Strathmann RR, Fenaux L, Strathmann MF (1992) Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 46:972–986

    PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    CAS  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1981) Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev Biol 82:41–55

    CAS  PubMed  Google Scholar 

  • Sun LD, Ye M, Hao H, Wang NT, Wang YQ, Cheng TR, Zhang QX, Wu RL (2014) A model framework for identifying genes that guide the evolution of heterochrony. Mol Biol Evol 31:2238–2247

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Nijhout HF (2006) Evolution of a polyphenism by genetic accommodation. Science 311:650–652

    CAS  PubMed  Google Scholar 

  • Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI (2011) A genetic basis for intraspecific differences in developmental timing? Evol Dev 13:542–548

    PubMed  Google Scholar 

  • Tills O, Rundle SD, Spicer JI (2013a) Parent-offspring similarity in the timing of developmental events: a potential link between ontogeny and phylogeny. Proc R Soc Lond B Biol Sci 280:2013479

    Google Scholar 

  • Tills O, Rundle SD, Spicer JI (2013b) Variance in developmental event timing occurs predominantly at low biological levels: implications for heterochrony. Biol J Linn Soc 110:581–590

    Google Scholar 

  • Tills O, Spicer JI, Rundle SD (2010) Salinity-induced heterokairy in an upper-estuarine population of the snail Radix balthica (Mollusca: Pulmonata). Aquat Biol 9:95–105

    Google Scholar 

  • Van Buskirk J (2002) A comparative test of the adaptive plasticity hypothesis: relationships between habitat and phenotype in anuran larvae. Am Nat 160:87–102

    PubMed  Google Scholar 

  • Van Dyck H, Bonte D, Puls R, Gotthard K, Maes D (2015) The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124:54–61

    Google Scholar 

  • Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol A Mol Integr Physiol 141:401–429

    PubMed  Google Scholar 

  • Voss SR, Smith JJ (2005) Evolution of salamander life cycles: a major-effect quantitative trait locus contributes to discrete and continuous variation for metamorphic timing. Genetica 170:275–281

    CAS  Google Scholar 

  • Wade AA, Hand BK, Kovach RP, Muhlfeld CC, Waples RS, Luikart G (2017) Assessments of species’ vulnerability to climate change: from pseudo to science. Biodivers Conserv 26:223–229

    Google Scholar 

  • Wagner D (2016) Making flowers at the right time. Dev Cell 37:208–210

    CAS  PubMed  Google Scholar 

  • Wagner D (2017) Key developmental transitions during flower morphogenesis and their regulation. Curr Opin Genet Dev 45:44. https://doi.org/10.1016/j.gde.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  • Warburton SJ, Burggren WW, Pelster B, Reiber CL, Spicer JI (eds) (2006) Comparative developmental physiology. Oxford University Press, New York

    Google Scholar 

  • Warkentin KM (2007) Oxygen, gills, and embryo behaviour: mechanisms of adaptive plasticity in hatching. Comp Biochem Physiol A Mol Integr Physiol 148:720–731

    PubMed  Google Scholar 

  • Warkentin KM (2011) Environmentally cued hatching across taxa: embryos respond to risk and opportunity. Integr Comp Biol 51:14–25

    PubMed  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102:6543–6549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood HA (2014) Mosaic physiology from developmental noise: within organism physiological diversity as an alternative to phenotypic plasticity and phenotypic flexibility. J Exp Biol 217:35–45

    Google Scholar 

  • Wund MA, Baker JA, Clancy B, Golub JL, Fosterk SA (2008) A test of the “flexible stem” model of evolution: ancestral plasticity, genetic accommodation and morphological divergence in the three-spine stickleback radiation. Am Nat 172:449–462

    PubMed  Google Scholar 

  • Yang LH, Rudolf VHW (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 13:1–10

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John I. Spicer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spicer, J.I., Tills, O., Truebano, M., Rundle, S.D. (2018). Developmental Plasticity and Heterokairy. In: Burggren, W., Dubansky, B. (eds) Development and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-75935-7_4

Download citation

Publish with us

Policies and ethics