Advertisement

Systems of Nanoparticles with SAMs and Polymers

  • Thomas W. H. Oates
Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)

Abstract

This chapter reviews the use of spectroscopic ellipsometry (SE) as a characterization tool for nanoparticle-polymer and nanoparticle-SAM hybrids. The development of such materials is based on the drive toward technological applications of new functional organic materials in solar cells, flat screen displays, sensors and organic electronics. For many of these application the optical properties of the materials are of critical importance for the device operation. In this respect, an accurate and complete determination of the frequency-dependent complex dielectric function, \(\varepsilon ( \omega ) = \varepsilon ' + i \varepsilon ''\), of the materials over a wide spectral range is the primary goal of SE characterization. The major focus of the chapter will be to present optical models that are needed to analyze the data; specifically to develop models that describe the effective dielectric function of a film of NPs supported by, or embedded in, an organic matrix. Starting with the Mie solution to Maxwell’s equations, examples of various nanoparticle scattering cross-sections are presented to show the influence of the particle size and material properties. Modeling composites then requires making the step from individual NPs to arrays and composites by using the effective medium approximation. Finally the origin of anisotropy will be described and models for the dielectric tensor elements presented. Examples from the literature will be referred to throughout.

References

  1. 1.
    D. Roy, J. Fendler, Adv. Mater. 16, 479 (2004)Google Scholar
  2. 2.
    V. Korstgens, J. Wiedersich, R. Meier, J. Perlich, S.V. Roth, R. Gehrke, P. Muller-Buschbaum, Anal. Bioanal. Chem. 396, 139 (2010)Google Scholar
  3. 3.
    K.B. Rodenhausen et al., Rev. Sci. Instrum. 82, 103111 (2011)Google Scholar
  4. 4.
    G. Mie, Ann. Phys. 25, 377 (1908)Google Scholar
  5. 5.
    R. Gans, Ann. Phys. 37, 881 (1912)Google Scholar
  6. 6.
    J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005)Google Scholar
  7. 7.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)Google Scholar
  8. 8.
    A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M.L. de la Chapelle, Phys. Rev. B 71, 085416 (2005)Google Scholar
  9. 9.
    G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)Google Scholar
  10. 10.
    P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 125, 164705 (2006)Google Scholar
  11. 11.
    D.W. Lynch, W.R. Hunter, Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, New York, 1985)Google Scholar
  12. 12.
  13. 13.
    C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, New J. Phys. 4, 93 (2002)Google Scholar
  14. 14.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)Google Scholar
  15. 15.
    A.S. Keita, A.E. Naciri, F. Delachat, M. Carrada, G. Ferblantier, A. Slaoui, J. Appl. Phys. 107, 093516 (2010)Google Scholar
  16. 16.
    I. Moreels, D. Kruschke, P. Glas, J.W. Tomm, Opt. Mater. Express 2, 496 (2012)Google Scholar
  17. 17.
    F. Aslam, J. Stevenson-Hill, D.J. Binks, S. Daniels, N.L. Pickett, P. O’Brien, Chem. Phys. 334, 45 (2007)Google Scholar
  18. 18.
    Z.Q. Liang, K.L. Dzienis, J. Xu, Q. Wang, Adv. Funct. Mater. 16, 542 (2006)Google Scholar
  19. 19.
    A. Antonello, G. Brusatin, M. Guglielmi, A. Martucci, V. Bello, G. Mattei, P. Mazzoldi, G. Pellegrini, Thin Solid Films 518, 6781 (2010)Google Scholar
  20. 20.
    J. Hong, H. Park, Colloids Surf. A Physicochem. Eng. Asp. 381, 7 (2011)Google Scholar
  21. 21.
    N.J. Alvarez, S.L. Anna, T. Saigal, R.D. Tilton, L.M. Walker, Langmuir 28, 8052 (2012)Google Scholar
  22. 22.
    G. Herzog et al., Langmuir 28, 8230 (2012)Google Scholar
  23. 23.
    S. Chandran, J.K. Basu, Eur. Phys. J. E 34, 99 (2011)Google Scholar
  24. 24.
    J. Kim, H.X. Yang, P.F. Green, Langmuir 28, 9735 (2012)Google Scholar
  25. 25.
    M. Eita, H. Arwin, H. Granberg, L. Wagberg, J. Colloid Interface Sci. 363, 566 (2011)Google Scholar
  26. 26.
    D.J. Schmidt, F.C. Cebeci, Z.I. Kalcioglu, S.G. Wyman, C. Ortiz, K.J. Van Vliet, P.T. Hammond, ACS Nano 3, 2207 (2009)Google Scholar
  27. 27.
    H. Biederman, Surf. Coat. Technol. 205, S10 (2011)Google Scholar
  28. 28.
    H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, F. Faupel, Nanotechnology 17, 3499 (2006)Google Scholar
  29. 29.
    U. Schurmann, H. Takele, V. Zaporojtchenko, F. Faupel, Thin Solid Films 515, 801 (2006)Google Scholar
  30. 30.
    M. Prato, M. Alloisio, S.A. Jadhav, A. Chincarini, T. Svaldo-Lanero, F. Bisio, O. Cavalleri, M. Canepa, J. Phys. Chem. C 113, 20683 (2009)Google Scholar
  31. 31.
    C.W. Meuse, Langmuir 16, 9483 (2000)Google Scholar
  32. 32.
    H.C. Gonzalez, U.G. Volkmann, M.J. Retamal, M. Cisternas, M.A. Sarabia, K.A. Lopez, J. Chem. Phys. 136, 134709 (2012)Google Scholar
  33. 33.
    P.K.B. Palomaki, A. Krawicz, P.H. Dinolfo, Langmuir 27, 4613 (2011)Google Scholar
  34. 34.
    H. Nakanishi et al., Nature 460, 371 (2009)Google Scholar
  35. 35.
    M.D. Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 123, 1471 (2001)Google Scholar
  36. 36.
    L.Y. Wang et al., J. Phys. Chem. C 112, 2448 (2008)Google Scholar
  37. 37.
    S. Jaber, M. Karg, A. Morfa, P. Mulvaney, Phys. Chem. Chem. Phys. 13, 5576 (2011)Google Scholar
  38. 38.
    K.M. Mayya, A. Gole, N. Jain, S. Phadtare, D. Langevin, M. Sastry, Langmuir 19, 9147 (2003)Google Scholar
  39. 39.
    M.M. Giangregorio, M. Losurdo, G.V. Bianco, A. Operamolla, E. Dilonardo, A. Sacchetti, P. Capezzuto, F. Babudri, G. Bruno, J. Phys. Chem. C 115, 19520 (2011)Google Scholar
  40. 40.
    G. Bruno et al., Langmuir 26, 8430 (2010)Google Scholar
  41. 41.
    D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, Y.J. Chabal, J. Phys. Chem. C 114, 14180 (2010)Google Scholar
  42. 42.
    D.E. Aspnes, Thin Solid Films 519, 2571 (2011)Google Scholar
  43. 43.
    S. Rauch, K.J. Eichhorn, M. Stamm, P. Uhlmann, J. Vac. Sci. Technol. A Vac. Surf. Films 30, 041514 (2012)Google Scholar
  44. 44.
    R.H. Doremus, P. Rao, J. Mater. Res. 11, 2834 (1996)Google Scholar
  45. 45.
    U. Kreibig, C. Vonfrags, Z. Phys. 224, 307 (1969)Google Scholar
  46. 46.
    U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)Google Scholar
  47. 47.
    A. Hilger, M. Tenfelde, U. Kreibig, Appl. Phys. B Lasers Opt. 73, 361 (2001)Google Scholar
  48. 48.
    T.W.H. Oates, E. Christalle, J. Phys. Chem. C 111, 182 (2007)Google Scholar
  49. 49.
    T.W.H. Oates, Appl. Phys. Lett. 88, 3 (2006)Google Scholar
  50. 50.
    M. Schadel, K.F. Jeltsch, P. Niyamakom, F. Rauscher, Y.F. Zhou, M. Kruger, K. Meerholz, J. Polym. Sci. Part B Polym. Phys. 50, 75 (2012)Google Scholar
  51. 51.
    M. Warenghem, J.F. Henninot, J.F. Blach, O. Buchnev, M. Kaczmarek, M. Stchakovsky, Rev. Sci. Instrum. 83, 035103 (2012)Google Scholar
  52. 52.
    G.J. Ruiterkamp, M.A. Hempenius, H. Wormeester, G.J. Vancso, J. Nanoparticle Res. 13, 2779 (2011)Google Scholar
  53. 53.
    Z. Balevicius, R. Drevinskas, M. Dapkus, G.J. Babonas, A. Ramanaviciene, A. Ramanavicius, Thin Solid Films 519, 2959 (2011)Google Scholar
  54. 54.
    S. Yamaguchi, J. Phys. Soc. Jpn. 15, 1577 (1960)Google Scholar
  55. 55.
    R.H. Doremus, J. Appl. Phys. 37, 2775 (1966)Google Scholar
  56. 56.
    R. Doremus, Thin Solid Films 326, 205 (1998)Google Scholar
  57. 57.
    H. Wormeester, E.S. Kooij, B. Poelsema, Phys. Status Solidi A Appl. Res. 205, 756 (2008)Google Scholar
  58. 58.
    H.L. Zhang, S.D. Evans, J.R. Henderson, Adv. Mater. 15, 531 (2003)Google Scholar
  59. 59.
    Z.M. Qi, I. Honma, M. Ichihara, H.S. Zhou, Adv. Funct. Mater. 16, 377 (2006)Google Scholar
  60. 60.
    D.A. Brevnov, C. Bungay, J. Phys. Chem. B 109, 14529 (2005)Google Scholar
  61. 61.
    H. Pan, S.H. Ko, C.P. Grigoropoulos, Appl. Phys. Lett. 93, 234104 (2008)Google Scholar
  62. 62.
    M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, D.L. Allara, Langmuir 23, 2414 (2007)Google Scholar
  63. 63.
    R.A. May, M.N. Patel, K.P. Johnston, K.J. Stevenson, Langmuir 25, 4498 (2009)Google Scholar
  64. 64.
    D.H. Wan, H.L. Chen, Y.S. Lin, S.Y. Chuang, J. Shieh, S.H. Chen, ACS Nano 3, 960 (2009)Google Scholar
  65. 65.
    T.W.H. Oates, L. Ryves, M.M.M. Bilek, Opt. Express 16, 2302 (2008)Google Scholar
  66. 66.
    H. Arwin, D.E. Aspnes, Thin Solid Films 113, 101 (1984)Google Scholar
  67. 67.
    S.V. Roth et al., J. Phys. Condens. Matter 23, 254208 (2011)Google Scholar
  68. 68.
    S.V. Roth et al., Appl. Phys. Lett. 88, 3 (2006)Google Scholar
  69. 69.
    R.R. Bhat, J. Genzer, Surf. Sci. 596, 187 (2005)Google Scholar
  70. 70.
    T.W.H. Oates, H. Sugime, S. Noda, J. Phys. Chem. C 113, 4820 (2009)Google Scholar
  71. 71.
    A. Hartstein, J.R. Kirtley, J.C. Tsang, Phys. Rev. Lett. 45, 201 (1980)Google Scholar
  72. 72.
    S.M. Tabakman et al., Nat. Commun. 2, 466 (2012)Google Scholar
  73. 73.
    Y. Nishikawa, K. Fujiwara, K. Ataka, M. Osawa, Anal. Chem. 65, 556 (1993)Google Scholar
  74. 74.
    T. Kamata, A. Kato, J. Umemura, T. Takenaka, Langmuir 3, 1150 (1987)Google Scholar
  75. 75.
    K. Itoh, K. Hayashi, Y. Hamanaka, M. Yamamoto, T. Araki, K. Iriyama, Langmuir 8, 140 (1992)Google Scholar
  76. 76.
    K. Ataka, J. Heberle, J. Am. Chem. Soc. 126, 9445 (2004)Google Scholar
  77. 77.
    X. Jiang, E. Zaitseva, M. Schmidt, F. Siebert, M. Engelhard, R. Schlesinger, K. Ataka, R. Vogel, J. Heberle, Proc. Natl. Acad. Sci. USA 105, 12113 (2008)Google Scholar
  78. 78.
    Y. Nishikawa, T. Nagasawa, K. Fujiwara, M. Osawa, Vib. Spectrosc. 6, 43 (1993)Google Scholar
  79. 79.
    T.R. Jensen, R.P. Van Duyne, S.A. Johnson, V.A. Maroni, Appl. Spectrosc. 54, 371 (2000)Google Scholar
  80. 80.
    M. Osawa, Surface-enhanced infrared absorption (2001)Google Scholar
  81. 81.
    A. Roseler, E.H. Korte, Thin Solid Films 313, 732 (1998)Google Scholar
  82. 82.
    K. Hinrichs, A. Roseler, K. Roodenko, J. Rappich, Appl. Spectrosc. 62, 121 (2008)Google Scholar
  83. 83.
    D.C. Bradford, E. Hutter, J.H. Fendler, D. Roy, J. Phys. Chem. B 109, 20914 (2005)Google Scholar
  84. 84.
    E. Garcia-Caurel, E. Bertran, A. Canillas, Thin Solid Films 398, 99 (2001)Google Scholar
  85. 85.
    A.E. Bjerke, P.R. Griffiths, W. Theiss, Anal. Chem. 71, 1967 (1999)Google Scholar
  86. 86.
    A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)Google Scholar
  87. 87.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)Google Scholar
  88. 88.
    S. Yamaguchi, J. Phys. Soc. Jpn. 17, 1172 (1962)Google Scholar
  89. 89.
    T.W.H. Oates, M. Ranjan, S. Facsko, H. Arwin, Opt. Express 19, 2014 (2011)Google Scholar
  90. 90.
    R.A. Ferrell, Phys. Rev. 111, 1214 (1958)Google Scholar
  91. 91.
    D.W. Berreman, Phys. Rev. 130, 2193 (1963)Google Scholar
  92. 92.
    F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, J. Aizpurua, Phys. Rev. Lett. 101, 157403 (2008)Google Scholar
  93. 93.
    D. Enders, T. Nagao, A. Pucci, T. Nakayama, M. Aono, Phys. Chem. Chem. Phys. 13, 4935 (2011)Google Scholar
  94. 94.
    J. Kundu, F. Le, P. Nordlander, N.J. Halas, Chem. Phys. Lett. 452, 115 (2008)Google Scholar
  95. 95.
    S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C.J. Zhang, P.V. Braun, H. Giessen, ACS Nano 6, 979 (2012)Google Scholar
  96. 96.
    R. Adato, A.A. Yanik, H. Altug, Nano Lett. 11, 5219 (2011)Google Scholar
  97. 97.
    R. Adato, A.A. Yanik, J.J. Amsden, D.L. Kaplan, F.G. Omenetto, M.K. Hong, S. Erramilli, H. Altug, Proc. Natl. Acad. Sci. USA 106, 19227 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V.BerlinGermany

Personalised recommendations