Thickness and Beyond. Exploiting Spectroscopic Ellipsometry and Atomic Force Nanolithography for the Investigation of Ultrathin Interfaces of Biologic Interest

  • Pietro Parisse
  • Ilaria Solano
  • Michele Magnozzi
  • Francesco Bisio
  • Loredana Casalis
  • Ornella Cavalleri
  • Maurizio Canepa
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


The evaluation of thickness, refractive index, and optical properties of biomolecular films and self-assembled monolayers (SAMs) has a prominent relevance in the development of label-free detection techniques (quartz microbalance, surface plasmon resonance, electrochemical devices) for sensing and diagnostics. In this framework Spectroscopic Ellipsometry (SE) is an important player. In our approach to SE measurements on ultrathin soft matter, we exploit the small changes of the ellipsometry response (\(\delta \varDelta \) and \(\delta \varPsi \)) following the addition/removal of a layer in a nanolayered structure. So-called \(\delta \varDelta \) and \(\delta \varPsi \) difference spectra allow to recognize features related to the molecular film (thickness, absorptions) and to the film-substrate interface thus extending SE to a sensitive surface UV-VIS spectroscopy. The potential of ellipsometry as a surface spectroscopy tool can be boosted when flanked by other characterizations methods. The chapter deals with the combined application of broad-band Spectroscopic Ellipsometry and nanolithography methods to study organic SAMs and multilayers. Nanolithography is achieved by the accurate removal of molecules from regularly shaped areas obtained through the action of shear forces exerted by the AFM tip in programmed scans. Differential height measurements between adjacent depleted and covered areas provide a direct measurement of film thickness, which can be compared with SE results or feed the SE analysis. In this chapter we will describe the main concepts behind the SE difference spectra method and AFM nanolithograhy. We will describe how SE and AFM can be combined to strengthen the reliability of the determination of thickness and, as a consequence, of the optical properties of films. Examples will be discussed, taken from recent experiments aimed to integrate SE and AFM nanolithography applied to SAMs and nano layers of biological interest. By analysing in detail the changes of the spectroscopic features of compact versus non-compact layers and correlating such changes with the post-lithography AFM analysis of surface morphology SE unravels the specific versus unspecific adsorption of biomolecules on gold surfaces functionalized with suitable SAMs.


Spectroscopic ellipsometry Surface optical spectroscopy Self- assembled monolayers Ultrathin biomolecular films Atomic force microscopy Nanolithography Nanografting Bio-molecule specific immobilization Label-free detection 



The authors acknowledge funding from the Italian Ministry of Education (FIRB grant RBAP11ETKA-005). M.C. thanks all the people who collaborated along the years to his SE research on ultrathin organic an biologic films and in particular Mirko Prato and Chiara Toccafondi.


  1. 1.
    K.L. Prime, G.M. Whitesides, Science 252, 1164 (1991)ADSGoogle Scholar
  2. 2.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)Google Scholar
  3. 3.
    A. Hucknall, S. Rangarajan, A. Chilkoti, Adv. Mater. 21, 2441 (2009)Google Scholar
  4. 4.
    R.K. Smith, P.A. Lewis, P.S. Weiss, Prog. Surf. Sci. 75, 1 (2004)ADSGoogle Scholar
  5. 5.
    J.C. Smith, K.-B. Lee, Q. Wang, M.G. Finn, J.E. Johnson, M. Mrksich, C.A. Mirkin, Nano Lett. 3, 883 (2003)ADSGoogle Scholar
  6. 6.
    F. Terzi, L. Pasquali, R. Seeber, Anal. Bioanal. Chem. 405, 1513 (2013)Google Scholar
  7. 7.
    L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Langmuir 14, 5636 (1998)Google Scholar
  8. 8.
    D.J. Vanderah, R.J. Vierling, M.L. Walker, Langmuir 25, 5026 (2009)Google Scholar
  9. 9.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977)Google Scholar
  10. 10.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007)Google Scholar
  11. 11.
    C. Pale-Grosdemange, E.S. Simon, K.L. Prime, G.M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991)Google Scholar
  12. 12.
    H. Arwin, D.E. Aspnes, Thin Solid Films 113, 101 (1984)ADSGoogle Scholar
  13. 13.
    E.A. Irene, Solid State Electron. 45, 1207 (2001)ADSGoogle Scholar
  14. 14.
    M. Prato, R. Moroni, F. Bisio, R. Rolandi, L. Mattera, O. Cavalleri, M. Canepa, J. Phys. Chem. C 112, 3899 (2008)Google Scholar
  15. 15.
    H.G. Tompkins, T. Tiwald, C. Bungay A.E. Hooper, J. Vac. Sci. Technol. A 24, 1605 (2006)Google Scholar
  16. 16.
    G. Gonella, O. Cavalleri, I. Emilianov, L. Mattera, M. Canepa, R. Rolandi, Mater. Sci. Eng. C 22, 359 (2002)Google Scholar
  17. 17.
    L. Pasquali, F. Terzi, R. Seeber, S. Nannarone, D. Datta, C. Dablemont, H. Hamoudi, M. Canepa, V.A. Esaulov, Langmuir 27, 4713 (2011)Google Scholar
  18. 18.
    L. Pasquali, S. Mukherjee, F. Terzi, A. Giglia, N. Mahne, K. Koshmak, V.A. Esaulov, C. Toccafondi, M. Canepa, S. Nannarone, Phys. Rev. B 89, 045401 (2014)ADSGoogle Scholar
  19. 19.
    F. Bordi, M. Prato, O. Cavalleri, C. Cametti, M. Canepa, A. Gliozzi, J. Phys. Chem. B 108, 20263 (2004)Google Scholar
  20. 20.
    K.B. Rodenhausen, T. Kasputis, A.K. Pannier, J.Y. Gerasimov, R.Y. Lai, M. Solinsky, T.E. Tiwald, H. Wang, A. Sarkar, T. Hofmann, N. Ianno, M. Schubert, Review of Scientific Instruments 82, 103111 (2011)ADSGoogle Scholar
  21. 21.
    This topic is amply treated in Chapter 10 of this book by K.B. Rodenhausen, D. Schmidt, C. Rice, T. Hofmann, E. Schubert, M. SchubertGoogle Scholar
  22. 22.
    T. Gesang, D. Fanter, R. Hoper, W. Possart, O.-D. Hennemann, Surf. Interface Anal. 23, 797 (1995)Google Scholar
  23. 23.
    N.A. Geisse, Mater. Today 12, 40 (2009)Google Scholar
  24. 24.
    I. Kopf, C. Grunwald, E. Bründermann, L. Casalis, G. Scoles, M. Havenith, J. Phys. Chem. C 114, 1306 (2010)Google Scholar
  25. 25.
    F. Lu, M. Jin, M.A. Belkin, Nat. Photonics 8, 307 (2014)Google Scholar
  26. 26.
    G.-Y. Liu, S. Xu, Y. Qian, Acc. Chem. Res. 33, 457 (2000)Google Scholar
  27. 27.
    M. Prato, M. Alloisio, S.A. Jadhav, A. Chincarini, T. Svaldo-Lanero, F. Bisio, O. Cavalleri, M. Canepa, J. Phys. Chem. C 113, 20683 (2009)Google Scholar
  28. 28.
    C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, M. Canepa, J. Colloid Interface Sci. 364, 125 (2011)ADSGoogle Scholar
  29. 29.
    I. Solano, P. Parisse, F. Gramazio, O. Cavalleri, G. Bracco, M. Castronovo, L. Casalis, M. Canepa, Phys. Chem. Chem. Phys. 17, 28774 (2015)Google Scholar
  30. 30.
    M. Canepa, in Surface Science Techniques, vol. 51, Springer Series in Surface Sciences, ed. by G. Bracco, B. Holst (Springer, Berlin, 2013), p. 99Google Scholar
  31. 31.
    J.D.E. McIntyre, D.E. Aspnes, Surf. Sci. 24, 417 (1971)ADSGoogle Scholar
  32. 32.
    M.J. Dignam, M. Moskovits, R.W. Stobie, Trans. Faraday Soc. 67, 3306 (1971)Google Scholar
  33. 33.
    A. Ulman, Chem. Rev. 96, 1533 (1996)Google Scholar
  34. 34.
    C.W. Meuse, Langmuir 16, 9483 (2000)Google Scholar
  35. 35.
    D. Tsankov, K. Hinrichs, E.H. Korte, R. Dietel, A. Röseler, Langmuir 18, 6559 (2002)Google Scholar
  36. 36.
    H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper, J. Phys. Chem. B 108, 3777 (2004)Google Scholar
  37. 37.
    D.C. Bradford, E. Hutter, J.H. Fendler, D. Roy, J. Phys. Chem. B 109, 20914 (2005)Google Scholar
  38. 38.
    Z.G. Hu, P. Prunici, P. Patzner, P. Hess, J. Phys. Chem. B 110, 14824 (2006)Google Scholar
  39. 39.
    P.N. Angelova, K. Hinrichs, I.L. Philipova, K.V. Kostova, D.T. Tsankov, J. Phys. Chem. C 114, 1253 (2010)Google Scholar
  40. 40.
    J. Shi, B. Hong, A.N. Parikh, R.W. Collins, D.L. Allara, Chem. Phys. Lett. 246, 90 (1995)ADSGoogle Scholar
  41. 41.
    K.A. Bell, L. Mantese, U. Rossow, D.E. Aspnes, J. Vac. Sci. Technol. B 15, 1205 (1997)Google Scholar
  42. 42.
    W. Chen, W.L. Schaich, Surf. Sci. 218, 580 (1989)ADSGoogle Scholar
  43. 43.
    L.J. Richter, C.S.-C. Yang, P.T. Wilson, C.A. Hacker, R.D. van Zee, J.J. Stapleton, D.L. Allara, Y. Yao, J.M. Tour, J. Phys. Chem. B 108, 12547 (2004)Google Scholar
  44. 44.
    H. Hamoudi, Z. Guo, M. Prato, C. Dablemont, W.Q. Zheng, B. Bourguignon, M. Canepa, V.A. Esaulov, Phys. Chem. Chem. Phys. 10, 6836 (2008)Google Scholar
  45. 45.
    H. Hamoudi, M. Prato, C. Dablemont, O. Cavalleri, M. Canepa, V.A. Esaulov, Langmuir 26, 7242 (2010)Google Scholar
  46. 46.
    H. Hamoudi, K. Uosaki, K. Ariga, V.A. Esaulov, RSC Adv. 4, 39657 (2014)Google Scholar
  47. 47.
    F. Bisio, M. Prato, E. Barborini, M. Canepa, Langmuir 27, 8371 (2011)Google Scholar
  48. 48.
    F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, M. Canepa, Phys. Rev. B 80, 205428 (2009)ADSGoogle Scholar
  49. 49.
    Regarding the interaction of nanoparticles with SAMs refer to Chapter 9 of this book by T.W.H. OatesGoogle Scholar
  50. 50.
    M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, V.A. Esaulov, Phys. Chem. Chem. Phys. 15, 11559 (2013)Google Scholar
  51. 51.
    J. Mårtensson, H. Arwin, Langmuir 11, 963 (1995)Google Scholar
  52. 52.
    O. Neuman, R. Naaman, J. Phys. Chem. B 110, 5163 (2006)Google Scholar
  53. 53.
    R. Mazzarello, A. Cossaro, A. Verdini, R. Rousseau, L. Casalis, M.F. Danisman, L. Floreano, S. Scandolo, A. Morgante, G. Scoles, Phys. Rev. Lett. 98, 016102 (2007)ADSGoogle Scholar
  54. 54.
    A. Cossaro, R. Mazzarello, R. Rousseau, L. Casalis, A. Verdini, A. Kohlmeyer, L. Floreano, S. Scandolo, A. Morgante, M.L. Klein, G. Scoles, Science 321, 943 (2008)ADSGoogle Scholar
  55. 55.
    E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benitez, A.A. Rubert, R.C. Salvarezza, Acc. Chem. Res. 45, 1183 (2012)Google Scholar
  56. 56.
    T. Burgi, Nanoscale 7, 15553 (2015)ADSGoogle Scholar
  57. 57.
    M. Prato, A. Gussoni, M. Panizza, O. Cavalleri, L. Mattera, M. Canepa, Phys. Status Solidi C 5, 1304 (2008)ADSGoogle Scholar
  58. 58.
    H. Arwin, Thin Solids Films 519, 2589 (2011)ADSGoogle Scholar
  59. 59.
    D.Y. Petrovykh, H. Kimura-Suda, A. Opdahl, L.J. Richter, M.J. Tarlov, L.J. Whitman, Langmuir 22, 2578 (2006)Google Scholar
  60. 60.
    N. Gergel-Hackett, C.D. Zangmeister, C.A. Hacker, L.J. Richter, C.A. Richter, J. Am. Chem. Soc. 130, 4259 (2008)Google Scholar
  61. 61.
    D.Y. Petrovykh, J.C. Smith, T.D. Clark, R. Stine, L.A. Baker, L.J. Whitman, Langmuir 25, 12185 (2009)Google Scholar
  62. 62.
    C.A. Hacker, C.A. Richter, N. Gergel-Hackett, L.J. Richter, J. Phys. Chem. C 111, 9384 (2007)Google Scholar
  63. 63.
    Z. Papa, S.K. Ramakrishnan, M. Martin, T. Cloitre, L. Zimanyi, J. Marquez, J. Budai, Z. Toth, C. Gergely, Langmuir 32, 7250 (2016)Google Scholar
  64. 64.
    B. Tieke, G. Lieser, G. Wegner, J. Polym. Sci. Polym. Chem. 17, 1631 (1979)Google Scholar
  65. 65.
    R.W. Carpick, T.M. Mayer, D.Y. Sasaki, A.R. Burns, Langmuir 16, 4639 (2000)Google Scholar
  66. 66.
    R.W. Carpick, D.Y. Sasaki, M.S. Marcus, M.A. Eriksson, A.R. Burns, J. Phys. Condens. Matter 16, R679 (2004)ADSGoogle Scholar
  67. 67.
    J.A. de Feijter, J.A. Benjamins, F.A. Veer, Biopolymers 17, 1759 (1978)Google Scholar
  68. 68.
    P.A. Cuypers, W.T. Hermens, H.C. Hemker, Anal. Biochem. 84, 56 (1978)Google Scholar
  69. 69.
    M. Malmsten, J. Colloid Interface Sci. 166, 333 (1994)ADSGoogle Scholar
  70. 70.
    H. Elwing, Biomaterials 19, 397 (1998)Google Scholar
  71. 71.
    P. Tengvall, I. Lundström, B. Liedberg, Biomaterials 19, 407 (1998)Google Scholar
  72. 72.
    S. Reichelt, K.-J. Eichhorn, D. Aulich, K. Hinrichs, N. Jain, D. Appelhans, B. Voit, Colloids Surf. B 69, 169 (2009)Google Scholar
  73. 73.
    C. Werner, K.-J. Eichhorn, K. Grundke, F. Simon, W. Grählert, H.J. Jacobasch, Colloids Surf. A 156, 3 (1999)Google Scholar
  74. 74.
    T. Byrne, L. Lohstreter, M.J. Filiaggi, Z. Bai, J.R. Dahn, Surf. Sci. 602, 2927 (2008)ADSGoogle Scholar
  75. 75.
    R.J. Marsh, R.A.L. Jones, M. Sferrazza, Colloids Surf. B 23, 31 (2002)Google Scholar
  76. 76.
    X.Q. Wang, Y.N. Wang, H. Xu, H.H. Shan, J.R. Lub, J. Colloid Interface Sci. 323, 18 (2008)ADSGoogle Scholar
  77. 77.
    S. Lousinian, S. Logothetidis, Thin Solid Films 516, 8002 (2008)ADSGoogle Scholar
  78. 78.
    M. Reza Nejadnik, C.D. Garcia, Colloids Surf. B 82, 253 (2011)Google Scholar
  79. 79.
    D.K. Goyal, A. Subramanian, Thin Solid Films 518, 2186 (2010)ADSGoogle Scholar
  80. 80.
    J.L. Wehmeyer, R. Synowicki, R. Bizios, C.D. García, Mater. Sci. Eng. C 30, 277 (2010)Google Scholar
  81. 81.
    C. Toccafondi, M. Prato, E. Barborini, S. Vinati, G. Maidecchi, A. Penco, O. Cavalleri, F. Bisio, M. Canepa, BioNanoScience 1, 210 (2011)Google Scholar
  82. 82.
    V. Reipa, A.K. Gaigalas, V.L. Vilker, Langmuir 13, 3508 (1997)Google Scholar
  83. 83.
    T. Berlind, M. Poksinski, P. Tengvall, H. Arwin, Colloids Surf. B 75, 410 (2010)Google Scholar
  84. 84.
    K. Spaeth, A. Brecht, G. Gauglitz, J. Colloid Interface Sci. 196, 128 (1997)ADSGoogle Scholar
  85. 85.
    A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotal, F. Vonderviszt, C. Hos, M. Fried, J. Gyulai, I. Barsony, Sens. Lett. 8, 730 (2010)Google Scholar
  86. 86.
    H. Arwin, Thin Solid Films 377–378, 48 (2000)ADSGoogle Scholar
  87. 87.
    H. Arwin, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (Andrew, Norwich, 2005), p. 799. (Chap. 12)Google Scholar
  88. 88.
    M.F. Mora, M. Reza Nejadnik, J.L. Baylon-Cardiel, C.E. Giacomelli, C.D. Garcia, J. Colloid Interface Sci. 346, 208 (2010)ADSGoogle Scholar
  89. 89.
    In this book, refer in particular to Chapters 1 by C. Cobet, 2 by H. Arwin, 5 by M. Erber et al., 6 by E. Bittrich et alGoogle Scholar
  90. 90.
    TIRE and SPR-enhanced SE are specifically addressed in Chapter 18 by H. ArwinGoogle Scholar
  91. 91.
    P. Westphal, A. Bornmann, Sens. Actuators B 84, 278 (2002)Google Scholar
  92. 92.
    M. Poksinski, H. Arwin, Thin Solid Films 455–456, 716 (2004)Google Scholar
  93. 93.
    A.V. Nabok, A. Tsargorodskaya, A.K. Hassan, N.F. Starodub, Appl. Surf. Sci. 246, 381 (2005)ADSGoogle Scholar
  94. 94.
    A. Nabok, A. Tsargorodskaya, Thin Solid Films 516, 8993 (2008)ADSGoogle Scholar
  95. 95.
    J. Mårtensson, H. Arwin, I. Lundström, T. Ericson, J. Colloid Interface Sci. 155, 30 (1993)ADSGoogle Scholar
  96. 96.
    J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, J. Colloid Interface Sci. 174, 79 (1995)ADSGoogle Scholar
  97. 97.
    H. Arwin, A. Askendahl, P. Tengvall, D.W. Thompson, J.A. Woollam, Phys. Status Solidi (c) 5, 1438 (2008)ADSGoogle Scholar
  98. 98.
    G. Sun, D.M. Rosu, X. Zhang, M. Hovestädt, S. Pop, U. Schade, D. Aulich, M. Gensch, B. Ay, H. Holzhütter, D.R.T. Zahn, N. Esser, R. Volkmer, J. Rappich, K. Hinrichs, Phys. Status Solidi (b) 247, 1925 (2010)Google Scholar
  99. 99.
    D. Aulich, O. Hoy, I. Luzinov, M. Brücher, R. Hergenröder, E. Bittrich, K.-J. Eichhorn, P. Uhlmann, M. Stamm, N. Esser, K. Hinrichs, Langmuir 26, 12926 (2010)Google Scholar
  100. 100.
    C. Toccafondi, O. Cavalleri, F. Bisio, M. Canepa, Thin Solid Films 543, 78 (2013)ADSGoogle Scholar
  101. 101.
    C. Toccafondi, L. Occhi, O. Cavalleri, A. Penco, R. Castagna, A. Bianco, C. Bertarelli, D. Comoretto, M. Canepa, J. Mater. Chem. C 2, 4692 (2014)Google Scholar
  102. 102.
    C. Akerlind, H. Arwin, F. Jakobsson, H. Kariis, K. Järrendahl, Thin Solid Films 519, 3582 (2011)ADSGoogle Scholar
  103. 103.
    L.G. Rosa, J. Liang, J. Phys. Condens. Matter 21, 483001 (2009)Google Scholar
  104. 104.
    G.-Y. Liu, X. Song, Y. Qian, Acc. Chem. Res. 33, 457 (2000)Google Scholar
  105. 105.
    L. Verstraete, J. Greenwood, B.E. Hirsch, S. de Feyter, ACS Nano 10, 10706 (2016)Google Scholar
  106. 106.
    R. Haselberg, F.M. Flesch, A. Boerke, G.W. Somsen, Anal. Chim. Acta 779, 90 (2013)Google Scholar
  107. 107.
    A. Bonyar, G. Harsanyi, in Proceedings of the International Spring Seminar on Electronics Technology, p. 519 (2011)Google Scholar
  108. 108.
    O. El Zubir, I. Barlow, G.J. Leggett, N.H. Williams, Nanoscale 5, 11125 (2013)ADSGoogle Scholar
  109. 109.
    C. Lee, E.A. Josephs, J. Shao, T. Ye, J. Phys. Chem. C 116, 17625 (2012)Google Scholar
  110. 110.
    V. Kolivoska, M. Gal, S. Lachmanova, P. Janda, R. Sokolova, M. Hromadova, Collect. Czechoslov. Chem. Commun. 76, 1075 (2011)Google Scholar
  111. 111.
    V. Kolivoska, M. Gal, M. Hromadova, S. Lachmanova, H. Tarabkova, P. Janda, L. Pospisil, A.M. Turonova, Colloids Surf. B Biointerfaces 94, 213 (2012)Google Scholar
  112. 112.
    X. Song, G. Liu, Langmuir 13, 127 (1997)Google Scholar
  113. 113.
    X. Zhai, H.J. Lee, T. Tian, T. Randall Lee, J.C. Garno, Molecules 19, 13010 (2014)Google Scholar
  114. 114.
    C. Staii, D.W. Wood, G. Scoles, Nano Lett. 8, 2503 (2008)ADSGoogle Scholar
  115. 115.
    C. Rotella, G. Doni, A. Bosco, M. Castronovo, A. De Vita, L. Casalis, G.M. Pavan, P. Parisse, Nanoscale 9, 6399 (2017)Google Scholar
  116. 116.
    M. Castronovo, D. Scaini, Methods Mol. Biol. (Clifton, N.J.) 749, 209 (2011)Google Scholar
  117. 117.
    S. Corvaglia, B. Sanavio, R.P. Hong Enriquez, B. Sorce, A. Bosco, D. Scaini, S. Sabella, P.P. Pompa, G. Scoles, L. Casalis, Sci. Rep. 4, 5366 (2014)ADSGoogle Scholar
  118. 118.
    E.A. Josephs, T. Ye, J. Am. Chem. Soc. 132, 10236 (2010)Google Scholar
  119. 119.
    E. Mirmontaz, M. Castronovo, C. Grunwald, F. Bano, D. Scaini, A.A. Ensafi, G. Scoles, L. Casalis, Nanoletters 8, 4134 (2008)ADSGoogle Scholar
  120. 120.
    T. Tian, B. Singhana, L.E. Englade-Franklin, X. Zhai, T. Randall Lee, J.C. Garno, Beilstein J. Nanotechnol. 5, 26 (2014)Google Scholar
  121. 121.
    I. Solano, P. Parisse, O. Cavalleri, F. Gramazio, L. Casalis, M. Canepa, Beilstein J. Nanotechnol. 7, 544 (2016)Google Scholar
  122. 122.
    J. Liang, M. Castronovo, G. Scoles, J. Am. Chem. Soc. 134, 39 (2012)Google Scholar
  123. 123.
    J. Te Riet, T. Smit, J.W. Gerritsen, A. Cambi, J.A.A.W. Elemans, C.G. Figdor, S. Speller, Langmuir 26, 6357 (2010)Google Scholar
  124. 124.
    D. Scaini, M. Castronovo, L. Casalis, G. Scoles, ACS Nano 2, 507 (2008)Google Scholar
  125. 125.
    J. Liang, G. Scoles, J. Phys. Chem. C 114, 10836 (2010)Google Scholar
  126. 126.
    P. Parisse, A. Vindigni, G. Scoles, L. Casalis, J. Phys. Chem. Lett. 3, 3532 (2012)Google Scholar
  127. 127.
    G. Doni, M.D. Nkoua Ngavouka, A. Barducci, P. Parisse, A. De Vita, G. Scoles, L. Casalis, G.M. Pavan, Nanoscale 5, 9988 (2013)ADSGoogle Scholar
  128. 128.
    J.N. Ngunjiri, D.J. Stark, T. Tian, K.A. Briggman, J.C. Garno, Anal. Bioanal. Chem. 405, 1985 (2013)Google Scholar
  129. 129.
    B. Sanavio, D. Scaini, C. Grunwald, G. Legname, G. Scoles, L. Casalis, ACS Nano 4, 6607 (2010)Google Scholar
  130. 130.
    F. Bano, L. Fruk, B. Sanavio, M. Glettenberg, L. Casalis, C.M. Niemeyer, G. Scoles, Nano Lett. 9, 2614 (2009)ADSGoogle Scholar
  131. 131.
    I. Solano, P. Parisse, F. Gramazio, L. Ianeselli, B. Medagli, O. Cavalleri, L. Casalis, M. Canepa, Appl. Surf. Sci. 421, 722 (2017)ADSGoogle Scholar
  132. 132.
    A.J. Pertsin, M. Grunze, Langmuir 16, 8829 (2000)Google Scholar
  133. 133.
    R.Y. Wang, M. Himmelhaus, J. Fick, S. Herrwerth, W. Eck, M. Grunze, J. Chem. Phys. 122, 164702 (2005)ADSGoogle Scholar
  134. 134.
    L. Li, S. Chen, J. Zheng, B.D. Ratner, S. Jiang, J. Phys. Chem. B 109, 2934 (2005)Google Scholar
  135. 135.
    P.S. Johnson, M. Goel, N.L. Abbott, F.J. Himpsel, Langmuir 30, 10263 (2014)Google Scholar
  136. 136.
    N. Inada, H. Asakawa, Y. Matsumoto, T. Fukuma, Nanotechnology 25, 305602 (2014)Google Scholar
  137. 137.
    S. Herrwerth, W. Eck, S. Reinhardt, M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003)Google Scholar
  138. 138.
    H.I. Kim, J.G. Kushmerick, J.E. Houston, B.C. Bunker, Langmuir 19, 9271 (2003)Google Scholar
  139. 139.
    T. Hayashi, Y. Tanaka, Y. Koide, M. Tanaka, M. Hara, Phys. Chem. Chem. Phys. 14, 10196 (2012)Google Scholar
  140. 140.
    L.K. Ista, G.P. Lopez, Langmuir 28, 12844 (2012)Google Scholar
  141. 141.
    E. Hochuli, H. Döbeli, A. Schacher, J. Chromatogr. A 411, 177 (1987)Google Scholar
  142. 142.
    G.B. Sigal, C. Bamdad, A. Barberis, J. Strominger, G.M. Whitesides, Anal. Chem. 68, 490 (1996)Google Scholar
  143. 143.
    A. Tinazli, J. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, R. Tampé, Chem. Eur. J. 11, 5249 (2005)Google Scholar
  144. 144.
    L.E. Valenti, C.P. De Pauli, C.E. Giacomelli, J. Inorg. Biochem. 100, 192 (2006)Google Scholar
  145. 145.
    F. Khan, H. Mingyue, M.J. Taussig, Anal. Chem. 78, 3072 (2006)Google Scholar
  146. 146.
    F. Cheng, L.J. Gamble, D.G. Castner, Anal. Chem. 80, 2564 (2008)Google Scholar
  147. 147.
    J.E. Gautrot, W.T.S. Huck, M. Welch, M. Ramstedt, ACS Appl. Mater. Interfaces 2, 193 (2010)Google Scholar
  148. 148.
    T.T. Le, C.P. Wilde, N. Grossman, A.E.G. Cass, Phys. Chem. Chem. Phys. 13, 5271 (2011)Google Scholar
  149. 149.
    L. Schmitt, M. Ludwig, H.E. Gaub, R. Tampé, Biophys. J. 78, 3275 (2000)Google Scholar
  150. 150.
    G.J. Wegner, H.J. Lee, G. Marriott, R.M. Corn, Anal. Chem. 75, 4740 (2003)Google Scholar
  151. 151.
    V. Gaberc-Porekar, V. Menart, Chem. Eng. Technol. 28, 1306 (2005)Google Scholar
  152. 152.
    G. Klenkar, R. Valiokas, I. Lundström, A. Tinazli, R. Tampé, J. Piehler, B. Liedberg, Anal. Chem. 78, 3643 (2006)Google Scholar
  153. 153.
    Y.-C. Li, Y.-S. Lin, P.-J. Tsai, C.-T. Chen, W.-Y. Chen, Y.-C. Chen, Anal. Chem. 79, 7519 (2007)Google Scholar
  154. 154.
    S.H. Kim, M. Jeyakumar, J.A. Katzenellenbogen, J. Am. Chem. Soc. 129, 13254 (2007)Google Scholar
  155. 155.
    P. Jain, L. Sun, J. Dai, G.L. Baker, M.L. Bruening, Biomacromolecules 8, 3102 (2007)Google Scholar
  156. 156.
    I. Nakamura, A. Makino, M. Ohmae, S. Kimura, Macromol. Biosci. 10, 1265 (2010)Google Scholar
  157. 157.
    W. Shen, H. Zhong, D. Neff, M.L. Norton, J. Am. Chem. Soc. 131, 6660 (2009)Google Scholar
  158. 158.
    C.-H.K. Wang, S. Jiang, S.H. Pun, Langmuir 26, 15445 (2010)Google Scholar
  159. 159.
    S. Uchinomiya, H. Nonaka, S. Wakayama, A. Ojida, I. Hamachi, Chem. Commun. 49, 5022 (2013)Google Scholar
  160. 160.
    M. Sosna, H. Boer, P.N. Bartlett, ChemPhysChem 14, 2225 (2013)Google Scholar
  161. 161.
    Y.-T. Lai, Y.-Y. Chang, L. Hu, Y. Yang, A. Chao, Z.-Y. Du, J.A. Tanner, M.-L. Chye, C. Qian, K.-M. Ng, H. Li, H. Sun, Proc. Natl. Acad. Sci. 112, 2948 (2015)Google Scholar
  162. 162.
    T. Panavas, C. Sanders, T.R. Butt, in SUMO Protocols, vol. 497, Methods in Molecular Biology, ed. by H.D. Ulrich (Humana Press, New York, 2009), p. 303Google Scholar
  163. 163.
    M.P. Malakhov, M.R. Mattern, O.A. Malakhova, M. Drinker, S.D. Weeks, T.R. Butt, J. Struct. Funct. Genomics 5, 75 (2004)Google Scholar
  164. 164.
    P. Bayer, A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke, J. Becker, J. Mol. Biol. 280, 275 (1998)Google Scholar
  165. 165.
    J. Song, Z. Zhang, H. Weidong, Y. Chen, J. Biol. Chem. 280, 40122 (2005)Google Scholar
  166. 166.
    I. Solano, Optical spectroscopy methods for the development of biosensors, Ph.D. thesis, University of Genova, 2016Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pietro Parisse
    • 1
  • Ilaria Solano
    • 2
  • Michele Magnozzi
    • 2
  • Francesco Bisio
    • 3
  • Loredana Casalis
    • 1
  • Ornella Cavalleri
    • 2
  • Maurizio Canepa
    • 2
  1. 1.Elettra Sincrotrone Trieste S.C.p.A.Basovizza, TriesteItaly
  2. 2.OPTMATLAB, Department of PhysicsUniversity of GenovaGenovaItaly
  3. 3.Istituto CNR-SPINGenovaItaly

Personalised recommendations