Skip to main content

Thickness and Beyond. Exploiting Spectroscopic Ellipsometry and Atomic Force Nanolithography for the Investigation of Ultrathin Interfaces of Biologic Interest

  • Chapter
  • First Online:
Ellipsometry of Functional Organic Surfaces and Films

Abstract

The evaluation of thickness, refractive index, and optical properties of biomolecular films and self-assembled monolayers (SAMs) has a prominent relevance in the development of label-free detection techniques (quartz microbalance, surface plasmon resonance, electrochemical devices) for sensing and diagnostics. In this framework Spectroscopic Ellipsometry (SE) is an important player. In our approach to SE measurements on ultrathin soft matter, we exploit the small changes of the ellipsometry response (\(\delta \varDelta \) and \(\delta \varPsi \)) following the addition/removal of a layer in a nanolayered structure. So-called \(\delta \varDelta \) and \(\delta \varPsi \) difference spectra allow to recognize features related to the molecular film (thickness, absorptions) and to the film-substrate interface thus extending SE to a sensitive surface UV-VIS spectroscopy. The potential of ellipsometry as a surface spectroscopy tool can be boosted when flanked by other characterizations methods. The chapter deals with the combined application of broad-band Spectroscopic Ellipsometry and nanolithography methods to study organic SAMs and multilayers. Nanolithography is achieved by the accurate removal of molecules from regularly shaped areas obtained through the action of shear forces exerted by the AFM tip in programmed scans. Differential height measurements between adjacent depleted and covered areas provide a direct measurement of film thickness, which can be compared with SE results or feed the SE analysis. In this chapter we will describe the main concepts behind the SE difference spectra method and AFM nanolithograhy. We will describe how SE and AFM can be combined to strengthen the reliability of the determination of thickness and, as a consequence, of the optical properties of films. Examples will be discussed, taken from recent experiments aimed to integrate SE and AFM nanolithography applied to SAMs and nano layers of biological interest. By analysing in detail the changes of the spectroscopic features of compact versus non-compact layers and correlating such changes with the post-lithography AFM analysis of surface morphology SE unravels the specific versus unspecific adsorption of biomolecules on gold surfaces functionalized with suitable SAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.L. Prime, G.M. Whitesides, Science 252, 1164 (1991)

    Article  ADS  Google Scholar 

  2. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)

    Article  Google Scholar 

  3. A. Hucknall, S. Rangarajan, A. Chilkoti, Adv. Mater. 21, 2441 (2009)

    Article  Google Scholar 

  4. R.K. Smith, P.A. Lewis, P.S. Weiss, Prog. Surf. Sci. 75, 1 (2004)

    Article  ADS  Google Scholar 

  5. J.C. Smith, K.-B. Lee, Q. Wang, M.G. Finn, J.E. Johnson, M. Mrksich, C.A. Mirkin, Nano Lett. 3, 883 (2003)

    Article  ADS  Google Scholar 

  6. F. Terzi, L. Pasquali, R. Seeber, Anal. Bioanal. Chem. 405, 1513 (2013)

    Article  Google Scholar 

  7. L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Langmuir 14, 5636 (1998)

    Article  Google Scholar 

  8. D.J. Vanderah, R.J. Vierling, M.L. Walker, Langmuir 25, 5026 (2009)

    Article  Google Scholar 

  9. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977)

    Google Scholar 

  10. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007)

    Book  Google Scholar 

  11. C. Pale-Grosdemange, E.S. Simon, K.L. Prime, G.M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991)

    Article  Google Scholar 

  12. H. Arwin, D.E. Aspnes, Thin Solid Films 113, 101 (1984)

    Article  ADS  Google Scholar 

  13. E.A. Irene, Solid State Electron. 45, 1207 (2001)

    Article  ADS  Google Scholar 

  14. M. Prato, R. Moroni, F. Bisio, R. Rolandi, L. Mattera, O. Cavalleri, M. Canepa, J. Phys. Chem. C 112, 3899 (2008)

    Article  Google Scholar 

  15. H.G. Tompkins, T. Tiwald, C. Bungay A.E. Hooper, J. Vac. Sci. Technol. A 24, 1605 (2006)

    Google Scholar 

  16. G. Gonella, O. Cavalleri, I. Emilianov, L. Mattera, M. Canepa, R. Rolandi, Mater. Sci. Eng. C 22, 359 (2002)

    Article  Google Scholar 

  17. L. Pasquali, F. Terzi, R. Seeber, S. Nannarone, D. Datta, C. Dablemont, H. Hamoudi, M. Canepa, V.A. Esaulov, Langmuir 27, 4713 (2011)

    Article  Google Scholar 

  18. L. Pasquali, S. Mukherjee, F. Terzi, A. Giglia, N. Mahne, K. Koshmak, V.A. Esaulov, C. Toccafondi, M. Canepa, S. Nannarone, Phys. Rev. B 89, 045401 (2014)

    Article  ADS  Google Scholar 

  19. F. Bordi, M. Prato, O. Cavalleri, C. Cametti, M. Canepa, A. Gliozzi, J. Phys. Chem. B 108, 20263 (2004)

    Article  Google Scholar 

  20. K.B. Rodenhausen, T. Kasputis, A.K. Pannier, J.Y. Gerasimov, R.Y. Lai, M. Solinsky, T.E. Tiwald, H. Wang, A. Sarkar, T. Hofmann, N. Ianno, M. Schubert, Review of Scientific Instruments 82, 103111 (2011)

    Article  ADS  Google Scholar 

  21. This topic is amply treated in Chapter 10 of this book by K.B. Rodenhausen, D. Schmidt, C. Rice, T. Hofmann, E. Schubert, M. Schubert

    Google Scholar 

  22. T. Gesang, D. Fanter, R. Hoper, W. Possart, O.-D. Hennemann, Surf. Interface Anal. 23, 797 (1995)

    Article  Google Scholar 

  23. N.A. Geisse, Mater. Today 12, 40 (2009)

    Article  Google Scholar 

  24. I. Kopf, C. Grunwald, E. Bründermann, L. Casalis, G. Scoles, M. Havenith, J. Phys. Chem. C 114, 1306 (2010)

    Article  Google Scholar 

  25. F. Lu, M. Jin, M.A. Belkin, Nat. Photonics 8, 307 (2014)

    Google Scholar 

  26. G.-Y. Liu, S. Xu, Y. Qian, Acc. Chem. Res. 33, 457 (2000)

    Article  Google Scholar 

  27. M. Prato, M. Alloisio, S.A. Jadhav, A. Chincarini, T. Svaldo-Lanero, F. Bisio, O. Cavalleri, M. Canepa, J. Phys. Chem. C 113, 20683 (2009)

    Article  Google Scholar 

  28. C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, M. Canepa, J. Colloid Interface Sci. 364, 125 (2011)

    Article  ADS  Google Scholar 

  29. I. Solano, P. Parisse, F. Gramazio, O. Cavalleri, G. Bracco, M. Castronovo, L. Casalis, M. Canepa, Phys. Chem. Chem. Phys. 17, 28774 (2015)

    Article  Google Scholar 

  30. M. Canepa, in Surface Science Techniques, vol. 51, Springer Series in Surface Sciences, ed. by G. Bracco, B. Holst (Springer, Berlin, 2013), p. 99

    Google Scholar 

  31. J.D.E. McIntyre, D.E. Aspnes, Surf. Sci. 24, 417 (1971)

    Article  ADS  Google Scholar 

  32. M.J. Dignam, M. Moskovits, R.W. Stobie, Trans. Faraday Soc. 67, 3306 (1971)

    Article  Google Scholar 

  33. A. Ulman, Chem. Rev. 96, 1533 (1996)

    Article  Google Scholar 

  34. C.W. Meuse, Langmuir 16, 9483 (2000)

    Article  Google Scholar 

  35. D. Tsankov, K. Hinrichs, E.H. Korte, R. Dietel, A. Röseler, Langmuir 18, 6559 (2002)

    Article  Google Scholar 

  36. H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper, J. Phys. Chem. B 108, 3777 (2004)

    Article  Google Scholar 

  37. D.C. Bradford, E. Hutter, J.H. Fendler, D. Roy, J. Phys. Chem. B 109, 20914 (2005)

    Article  Google Scholar 

  38. Z.G. Hu, P. Prunici, P. Patzner, P. Hess, J. Phys. Chem. B 110, 14824 (2006)

    Article  Google Scholar 

  39. P.N. Angelova, K. Hinrichs, I.L. Philipova, K.V. Kostova, D.T. Tsankov, J. Phys. Chem. C 114, 1253 (2010)

    Article  Google Scholar 

  40. J. Shi, B. Hong, A.N. Parikh, R.W. Collins, D.L. Allara, Chem. Phys. Lett. 246, 90 (1995)

    Article  ADS  Google Scholar 

  41. K.A. Bell, L. Mantese, U. Rossow, D.E. Aspnes, J. Vac. Sci. Technol. B 15, 1205 (1997)

    Article  Google Scholar 

  42. W. Chen, W.L. Schaich, Surf. Sci. 218, 580 (1989)

    Article  ADS  Google Scholar 

  43. L.J. Richter, C.S.-C. Yang, P.T. Wilson, C.A. Hacker, R.D. van Zee, J.J. Stapleton, D.L. Allara, Y. Yao, J.M. Tour, J. Phys. Chem. B 108, 12547 (2004)

    Article  Google Scholar 

  44. H. Hamoudi, Z. Guo, M. Prato, C. Dablemont, W.Q. Zheng, B. Bourguignon, M. Canepa, V.A. Esaulov, Phys. Chem. Chem. Phys. 10, 6836 (2008)

    Article  Google Scholar 

  45. H. Hamoudi, M. Prato, C. Dablemont, O. Cavalleri, M. Canepa, V.A. Esaulov, Langmuir 26, 7242 (2010)

    Article  Google Scholar 

  46. H. Hamoudi, K. Uosaki, K. Ariga, V.A. Esaulov, RSC Adv. 4, 39657 (2014)

    Article  Google Scholar 

  47. F. Bisio, M. Prato, E. Barborini, M. Canepa, Langmuir 27, 8371 (2011)

    Article  Google Scholar 

  48. F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, M. Canepa, Phys. Rev. B 80, 205428 (2009)

    Article  ADS  Google Scholar 

  49. Regarding the interaction of nanoparticles with SAMs refer to Chapter 9 of this book by T.W.H. Oates

    Google Scholar 

  50. M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, V.A. Esaulov, Phys. Chem. Chem. Phys. 15, 11559 (2013)

    Article  Google Scholar 

  51. J. MÃ¥rtensson, H. Arwin, Langmuir 11, 963 (1995)

    Article  Google Scholar 

  52. O. Neuman, R. Naaman, J. Phys. Chem. B 110, 5163 (2006)

    Article  Google Scholar 

  53. R. Mazzarello, A. Cossaro, A. Verdini, R. Rousseau, L. Casalis, M.F. Danisman, L. Floreano, S. Scandolo, A. Morgante, G. Scoles, Phys. Rev. Lett. 98, 016102 (2007)

    Article  ADS  Google Scholar 

  54. A. Cossaro, R. Mazzarello, R. Rousseau, L. Casalis, A. Verdini, A. Kohlmeyer, L. Floreano, S. Scandolo, A. Morgante, M.L. Klein, G. Scoles, Science 321, 943 (2008)

    Article  ADS  Google Scholar 

  55. E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benitez, A.A. Rubert, R.C. Salvarezza, Acc. Chem. Res. 45, 1183 (2012)

    Article  Google Scholar 

  56. T. Burgi, Nanoscale 7, 15553 (2015)

    Article  ADS  Google Scholar 

  57. M. Prato, A. Gussoni, M. Panizza, O. Cavalleri, L. Mattera, M. Canepa, Phys. Status Solidi C 5, 1304 (2008)

    Article  ADS  Google Scholar 

  58. H. Arwin, Thin Solids Films 519, 2589 (2011)

    Article  ADS  Google Scholar 

  59. D.Y. Petrovykh, H. Kimura-Suda, A. Opdahl, L.J. Richter, M.J. Tarlov, L.J. Whitman, Langmuir 22, 2578 (2006)

    Article  Google Scholar 

  60. N. Gergel-Hackett, C.D. Zangmeister, C.A. Hacker, L.J. Richter, C.A. Richter, J. Am. Chem. Soc. 130, 4259 (2008)

    Article  Google Scholar 

  61. D.Y. Petrovykh, J.C. Smith, T.D. Clark, R. Stine, L.A. Baker, L.J. Whitman, Langmuir 25, 12185 (2009)

    Article  Google Scholar 

  62. C.A. Hacker, C.A. Richter, N. Gergel-Hackett, L.J. Richter, J. Phys. Chem. C 111, 9384 (2007)

    Article  Google Scholar 

  63. Z. Papa, S.K. Ramakrishnan, M. Martin, T. Cloitre, L. Zimanyi, J. Marquez, J. Budai, Z. Toth, C. Gergely, Langmuir 32, 7250 (2016)

    Article  Google Scholar 

  64. B. Tieke, G. Lieser, G. Wegner, J. Polym. Sci. Polym. Chem. 17, 1631 (1979)

    Article  Google Scholar 

  65. R.W. Carpick, T.M. Mayer, D.Y. Sasaki, A.R. Burns, Langmuir 16, 4639 (2000)

    Article  Google Scholar 

  66. R.W. Carpick, D.Y. Sasaki, M.S. Marcus, M.A. Eriksson, A.R. Burns, J. Phys. Condens. Matter 16, R679 (2004)

    Article  ADS  Google Scholar 

  67. J.A. de Feijter, J.A. Benjamins, F.A. Veer, Biopolymers 17, 1759 (1978)

    Article  Google Scholar 

  68. P.A. Cuypers, W.T. Hermens, H.C. Hemker, Anal. Biochem. 84, 56 (1978)

    Article  Google Scholar 

  69. M. Malmsten, J. Colloid Interface Sci. 166, 333 (1994)

    Article  ADS  Google Scholar 

  70. H. Elwing, Biomaterials 19, 397 (1998)

    Article  Google Scholar 

  71. P. Tengvall, I. Lundström, B. Liedberg, Biomaterials 19, 407 (1998)

    Article  Google Scholar 

  72. S. Reichelt, K.-J. Eichhorn, D. Aulich, K. Hinrichs, N. Jain, D. Appelhans, B. Voit, Colloids Surf. B 69, 169 (2009)

    Article  Google Scholar 

  73. C. Werner, K.-J. Eichhorn, K. Grundke, F. Simon, W. Grählert, H.J. Jacobasch, Colloids Surf. A 156, 3 (1999)

    Article  Google Scholar 

  74. T. Byrne, L. Lohstreter, M.J. Filiaggi, Z. Bai, J.R. Dahn, Surf. Sci. 602, 2927 (2008)

    Article  ADS  Google Scholar 

  75. R.J. Marsh, R.A.L. Jones, M. Sferrazza, Colloids Surf. B 23, 31 (2002)

    Article  Google Scholar 

  76. X.Q. Wang, Y.N. Wang, H. Xu, H.H. Shan, J.R. Lub, J. Colloid Interface Sci. 323, 18 (2008)

    Article  ADS  Google Scholar 

  77. S. Lousinian, S. Logothetidis, Thin Solid Films 516, 8002 (2008)

    Article  ADS  Google Scholar 

  78. M. Reza Nejadnik, C.D. Garcia, Colloids Surf. B 82, 253 (2011)

    Article  Google Scholar 

  79. D.K. Goyal, A. Subramanian, Thin Solid Films 518, 2186 (2010)

    Article  ADS  Google Scholar 

  80. J.L. Wehmeyer, R. Synowicki, R. Bizios, C.D. García, Mater. Sci. Eng. C 30, 277 (2010)

    Article  Google Scholar 

  81. C. Toccafondi, M. Prato, E. Barborini, S. Vinati, G. Maidecchi, A. Penco, O. Cavalleri, F. Bisio, M. Canepa, BioNanoScience 1, 210 (2011)

    Article  Google Scholar 

  82. V. Reipa, A.K. Gaigalas, V.L. Vilker, Langmuir 13, 3508 (1997)

    Article  Google Scholar 

  83. T. Berlind, M. Poksinski, P. Tengvall, H. Arwin, Colloids Surf. B 75, 410 (2010)

    Article  Google Scholar 

  84. K. Spaeth, A. Brecht, G. Gauglitz, J. Colloid Interface Sci. 196, 128 (1997)

    Article  ADS  Google Scholar 

  85. A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotal, F. Vonderviszt, C. Hos, M. Fried, J. Gyulai, I. Barsony, Sens. Lett. 8, 730 (2010)

    Article  Google Scholar 

  86. H. Arwin, Thin Solid Films 377–378, 48 (2000)

    Article  ADS  Google Scholar 

  87. H. Arwin, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (Andrew, Norwich, 2005), p. 799. (Chap. 12)

    Google Scholar 

  88. M.F. Mora, M. Reza Nejadnik, J.L. Baylon-Cardiel, C.E. Giacomelli, C.D. Garcia, J. Colloid Interface Sci. 346, 208 (2010)

    Article  ADS  Google Scholar 

  89. In this book, refer in particular to Chapters 1 by C. Cobet, 2 by H. Arwin, 5 by M. Erber et al., 6 by E. Bittrich et al

    Google Scholar 

  90. TIRE and SPR-enhanced SE are specifically addressed in Chapter 18 by H. Arwin

    Google Scholar 

  91. P. Westphal, A. Bornmann, Sens. Actuators B 84, 278 (2002)

    Article  Google Scholar 

  92. M. Poksinski, H. Arwin, Thin Solid Films 455–456, 716 (2004)

    Article  Google Scholar 

  93. A.V. Nabok, A. Tsargorodskaya, A.K. Hassan, N.F. Starodub, Appl. Surf. Sci. 246, 381 (2005)

    Article  ADS  Google Scholar 

  94. A. Nabok, A. Tsargorodskaya, Thin Solid Films 516, 8993 (2008)

    Article  ADS  Google Scholar 

  95. J. Mårtensson, H. Arwin, I. Lundström, T. Ericson, J. Colloid Interface Sci. 155, 30 (1993)

    Article  ADS  Google Scholar 

  96. J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, J. Colloid Interface Sci. 174, 79 (1995)

    Article  ADS  Google Scholar 

  97. H. Arwin, A. Askendahl, P. Tengvall, D.W. Thompson, J.A. Woollam, Phys. Status Solidi (c) 5, 1438 (2008)

    Article  ADS  Google Scholar 

  98. G. Sun, D.M. Rosu, X. Zhang, M. Hovestädt, S. Pop, U. Schade, D. Aulich, M. Gensch, B. Ay, H. Holzhütter, D.R.T. Zahn, N. Esser, R. Volkmer, J. Rappich, K. Hinrichs, Phys. Status Solidi (b) 247, 1925 (2010)

    Google Scholar 

  99. D. Aulich, O. Hoy, I. Luzinov, M. Brücher, R. Hergenröder, E. Bittrich, K.-J. Eichhorn, P. Uhlmann, M. Stamm, N. Esser, K. Hinrichs, Langmuir 26, 12926 (2010)

    Article  Google Scholar 

  100. C. Toccafondi, O. Cavalleri, F. Bisio, M. Canepa, Thin Solid Films 543, 78 (2013)

    Article  ADS  Google Scholar 

  101. C. Toccafondi, L. Occhi, O. Cavalleri, A. Penco, R. Castagna, A. Bianco, C. Bertarelli, D. Comoretto, M. Canepa, J. Mater. Chem. C 2, 4692 (2014)

    Article  Google Scholar 

  102. C. Akerlind, H. Arwin, F. Jakobsson, H. Kariis, K. Järrendahl, Thin Solid Films 519, 3582 (2011)

    Article  ADS  Google Scholar 

  103. L.G. Rosa, J. Liang, J. Phys. Condens. Matter 21, 483001 (2009)

    Google Scholar 

  104. G.-Y. Liu, X. Song, Y. Qian, Acc. Chem. Res. 33, 457 (2000)

    Article  Google Scholar 

  105. L. Verstraete, J. Greenwood, B.E. Hirsch, S. de Feyter, ACS Nano 10, 10706 (2016)

    Article  Google Scholar 

  106. R. Haselberg, F.M. Flesch, A. Boerke, G.W. Somsen, Anal. Chim. Acta 779, 90 (2013)

    Article  Google Scholar 

  107. A. Bonyar, G. Harsanyi, in Proceedings of the International Spring Seminar on Electronics Technology, p. 519 (2011)

    Google Scholar 

  108. O. El Zubir, I. Barlow, G.J. Leggett, N.H. Williams, Nanoscale 5, 11125 (2013)

    Article  ADS  Google Scholar 

  109. C. Lee, E.A. Josephs, J. Shao, T. Ye, J. Phys. Chem. C 116, 17625 (2012)

    Article  Google Scholar 

  110. V. Kolivoska, M. Gal, S. Lachmanova, P. Janda, R. Sokolova, M. Hromadova, Collect. Czechoslov. Chem. Commun. 76, 1075 (2011)

    Article  Google Scholar 

  111. V. Kolivoska, M. Gal, M. Hromadova, S. Lachmanova, H. Tarabkova, P. Janda, L. Pospisil, A.M. Turonova, Colloids Surf. B Biointerfaces 94, 213 (2012)

    Article  Google Scholar 

  112. X. Song, G. Liu, Langmuir 13, 127 (1997)

    Article  Google Scholar 

  113. X. Zhai, H.J. Lee, T. Tian, T. Randall Lee, J.C. Garno, Molecules 19, 13010 (2014)

    Article  Google Scholar 

  114. C. Staii, D.W. Wood, G. Scoles, Nano Lett. 8, 2503 (2008)

    Article  ADS  Google Scholar 

  115. C. Rotella, G. Doni, A. Bosco, M. Castronovo, A. De Vita, L. Casalis, G.M. Pavan, P. Parisse, Nanoscale 9, 6399 (2017)

    Article  Google Scholar 

  116. M. Castronovo, D. Scaini, Methods Mol. Biol. (Clifton, N.J.) 749, 209 (2011)

    Google Scholar 

  117. S. Corvaglia, B. Sanavio, R.P. Hong Enriquez, B. Sorce, A. Bosco, D. Scaini, S. Sabella, P.P. Pompa, G. Scoles, L. Casalis, Sci. Rep. 4, 5366 (2014)

    Article  ADS  Google Scholar 

  118. E.A. Josephs, T. Ye, J. Am. Chem. Soc. 132, 10236 (2010)

    Article  Google Scholar 

  119. E. Mirmontaz, M. Castronovo, C. Grunwald, F. Bano, D. Scaini, A.A. Ensafi, G. Scoles, L. Casalis, Nanoletters 8, 4134 (2008)

    Article  ADS  Google Scholar 

  120. T. Tian, B. Singhana, L.E. Englade-Franklin, X. Zhai, T. Randall Lee, J.C. Garno, Beilstein J. Nanotechnol. 5, 26 (2014)

    Article  Google Scholar 

  121. I. Solano, P. Parisse, O. Cavalleri, F. Gramazio, L. Casalis, M. Canepa, Beilstein J. Nanotechnol. 7, 544 (2016)

    Article  Google Scholar 

  122. J. Liang, M. Castronovo, G. Scoles, J. Am. Chem. Soc. 134, 39 (2012)

    Article  Google Scholar 

  123. J. Te Riet, T. Smit, J.W. Gerritsen, A. Cambi, J.A.A.W. Elemans, C.G. Figdor, S. Speller, Langmuir 26, 6357 (2010)

    Article  Google Scholar 

  124. D. Scaini, M. Castronovo, L. Casalis, G. Scoles, ACS Nano 2, 507 (2008)

    Article  Google Scholar 

  125. J. Liang, G. Scoles, J. Phys. Chem. C 114, 10836 (2010)

    Article  Google Scholar 

  126. P. Parisse, A. Vindigni, G. Scoles, L. Casalis, J. Phys. Chem. Lett. 3, 3532 (2012)

    Article  Google Scholar 

  127. G. Doni, M.D. Nkoua Ngavouka, A. Barducci, P. Parisse, A. De Vita, G. Scoles, L. Casalis, G.M. Pavan, Nanoscale 5, 9988 (2013)

    Article  ADS  Google Scholar 

  128. J.N. Ngunjiri, D.J. Stark, T. Tian, K.A. Briggman, J.C. Garno, Anal. Bioanal. Chem. 405, 1985 (2013)

    Article  Google Scholar 

  129. B. Sanavio, D. Scaini, C. Grunwald, G. Legname, G. Scoles, L. Casalis, ACS Nano 4, 6607 (2010)

    Article  Google Scholar 

  130. F. Bano, L. Fruk, B. Sanavio, M. Glettenberg, L. Casalis, C.M. Niemeyer, G. Scoles, Nano Lett. 9, 2614 (2009)

    Article  ADS  Google Scholar 

  131. I. Solano, P. Parisse, F. Gramazio, L. Ianeselli, B. Medagli, O. Cavalleri, L. Casalis, M. Canepa, Appl. Surf. Sci. 421, 722 (2017)

    Article  ADS  Google Scholar 

  132. A.J. Pertsin, M. Grunze, Langmuir 16, 8829 (2000)

    Article  Google Scholar 

  133. R.Y. Wang, M. Himmelhaus, J. Fick, S. Herrwerth, W. Eck, M. Grunze, J. Chem. Phys. 122, 164702 (2005)

    Article  ADS  Google Scholar 

  134. L. Li, S. Chen, J. Zheng, B.D. Ratner, S. Jiang, J. Phys. Chem. B 109, 2934 (2005)

    Article  Google Scholar 

  135. P.S. Johnson, M. Goel, N.L. Abbott, F.J. Himpsel, Langmuir 30, 10263 (2014)

    Article  Google Scholar 

  136. N. Inada, H. Asakawa, Y. Matsumoto, T. Fukuma, Nanotechnology 25, 305602 (2014)

    Article  Google Scholar 

  137. S. Herrwerth, W. Eck, S. Reinhardt, M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003)

    Article  Google Scholar 

  138. H.I. Kim, J.G. Kushmerick, J.E. Houston, B.C. Bunker, Langmuir 19, 9271 (2003)

    Article  Google Scholar 

  139. T. Hayashi, Y. Tanaka, Y. Koide, M. Tanaka, M. Hara, Phys. Chem. Chem. Phys. 14, 10196 (2012)

    Article  Google Scholar 

  140. L.K. Ista, G.P. Lopez, Langmuir 28, 12844 (2012)

    Article  Google Scholar 

  141. E. Hochuli, H. Döbeli, A. Schacher, J. Chromatogr. A 411, 177 (1987)

    Article  Google Scholar 

  142. G.B. Sigal, C. Bamdad, A. Barberis, J. Strominger, G.M. Whitesides, Anal. Chem. 68, 490 (1996)

    Article  Google Scholar 

  143. A. Tinazli, J. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, R. Tampé, Chem. Eur. J. 11, 5249 (2005)

    Article  Google Scholar 

  144. L.E. Valenti, C.P. De Pauli, C.E. Giacomelli, J. Inorg. Biochem. 100, 192 (2006)

    Article  Google Scholar 

  145. F. Khan, H. Mingyue, M.J. Taussig, Anal. Chem. 78, 3072 (2006)

    Article  Google Scholar 

  146. F. Cheng, L.J. Gamble, D.G. Castner, Anal. Chem. 80, 2564 (2008)

    Article  Google Scholar 

  147. J.E. Gautrot, W.T.S. Huck, M. Welch, M. Ramstedt, ACS Appl. Mater. Interfaces 2, 193 (2010)

    Article  Google Scholar 

  148. T.T. Le, C.P. Wilde, N. Grossman, A.E.G. Cass, Phys. Chem. Chem. Phys. 13, 5271 (2011)

    Article  Google Scholar 

  149. L. Schmitt, M. Ludwig, H.E. Gaub, R. Tampé, Biophys. J. 78, 3275 (2000)

    Article  Google Scholar 

  150. G.J. Wegner, H.J. Lee, G. Marriott, R.M. Corn, Anal. Chem. 75, 4740 (2003)

    Article  Google Scholar 

  151. V. Gaberc-Porekar, V. Menart, Chem. Eng. Technol. 28, 1306 (2005)

    Article  Google Scholar 

  152. G. Klenkar, R. Valiokas, I. Lundström, A. Tinazli, R. Tampé, J. Piehler, B. Liedberg, Anal. Chem. 78, 3643 (2006)

    Article  Google Scholar 

  153. Y.-C. Li, Y.-S. Lin, P.-J. Tsai, C.-T. Chen, W.-Y. Chen, Y.-C. Chen, Anal. Chem. 79, 7519 (2007)

    Article  Google Scholar 

  154. S.H. Kim, M. Jeyakumar, J.A. Katzenellenbogen, J. Am. Chem. Soc. 129, 13254 (2007)

    Article  Google Scholar 

  155. P. Jain, L. Sun, J. Dai, G.L. Baker, M.L. Bruening, Biomacromolecules 8, 3102 (2007)

    Article  Google Scholar 

  156. I. Nakamura, A. Makino, M. Ohmae, S. Kimura, Macromol. Biosci. 10, 1265 (2010)

    Article  Google Scholar 

  157. W. Shen, H. Zhong, D. Neff, M.L. Norton, J. Am. Chem. Soc. 131, 6660 (2009)

    Article  Google Scholar 

  158. C.-H.K. Wang, S. Jiang, S.H. Pun, Langmuir 26, 15445 (2010)

    Article  Google Scholar 

  159. S. Uchinomiya, H. Nonaka, S. Wakayama, A. Ojida, I. Hamachi, Chem. Commun. 49, 5022 (2013)

    Article  Google Scholar 

  160. M. Sosna, H. Boer, P.N. Bartlett, ChemPhysChem 14, 2225 (2013)

    Article  Google Scholar 

  161. Y.-T. Lai, Y.-Y. Chang, L. Hu, Y. Yang, A. Chao, Z.-Y. Du, J.A. Tanner, M.-L. Chye, C. Qian, K.-M. Ng, H. Li, H. Sun, Proc. Natl. Acad. Sci. 112, 2948 (2015)

    Google Scholar 

  162. T. Panavas, C. Sanders, T.R. Butt, in SUMO Protocols, vol. 497, Methods in Molecular Biology, ed. by H.D. Ulrich (Humana Press, New York, 2009), p. 303

    Google Scholar 

  163. M.P. Malakhov, M.R. Mattern, O.A. Malakhova, M. Drinker, S.D. Weeks, T.R. Butt, J. Struct. Funct. Genomics 5, 75 (2004)

    Article  Google Scholar 

  164. P. Bayer, A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke, J. Becker, J. Mol. Biol. 280, 275 (1998)

    Article  Google Scholar 

  165. J. Song, Z. Zhang, H. Weidong, Y. Chen, J. Biol. Chem. 280, 40122 (2005)

    Article  Google Scholar 

  166. I. Solano, Optical spectroscopy methods for the development of biosensors, Ph.D. thesis, University of Genova, 2016

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Italian Ministry of Education (FIRB grant RBAP11ETKA-005). M.C. thanks all the people who collaborated along the years to his SE research on ultrathin organic an biologic films and in particular Mirko Prato and Chiara Toccafondi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Canepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parisse, P. et al. (2018). Thickness and Beyond. Exploiting Spectroscopic Ellipsometry and Atomic Force Nanolithography for the Investigation of Ultrathin Interfaces of Biologic Interest. In: Hinrichs, K., Eichhorn, KJ. (eds) Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75895-4_4

Download citation

Publish with us

Policies and ethics