Thickness and Beyond. Exploiting Spectroscopic Ellipsometry and Atomic Force Nanolithography for the Investigation of Ultrathin Interfaces of Biologic Interest

  • Pietro Parisse
  • Ilaria Solano
  • Michele Magnozzi
  • Francesco Bisio
  • Loredana Casalis
  • Ornella Cavalleri
  • Maurizio Canepa
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


The evaluation of thickness, refractive index, and optical properties of biomolecular films and self-assembled monolayers (SAMs) has a prominent relevance in the development of label-free detection techniques (quartz microbalance, surface plasmon resonance, electrochemical devices) for sensing and diagnostics. In this framework Spectroscopic Ellipsometry (SE) is an important player. In our approach to SE measurements on ultrathin soft matter, we exploit the small changes of the ellipsometry response (\(\delta \varDelta \) and \(\delta \varPsi \)) following the addition/removal of a layer in a nanolayered structure. So-called \(\delta \varDelta \) and \(\delta \varPsi \) difference spectra allow to recognize features related to the molecular film (thickness, absorptions) and to the film-substrate interface thus extending SE to a sensitive surface UV-VIS spectroscopy. The potential of ellipsometry as a surface spectroscopy tool can be boosted when flanked by other characterizations methods. The chapter deals with the combined application of broad-band Spectroscopic Ellipsometry and nanolithography methods to study organic SAMs and multilayers. Nanolithography is achieved by the accurate removal of molecules from regularly shaped areas obtained through the action of shear forces exerted by the AFM tip in programmed scans. Differential height measurements between adjacent depleted and covered areas provide a direct measurement of film thickness, which can be compared with SE results or feed the SE analysis. In this chapter we will describe the main concepts behind the SE difference spectra method and AFM nanolithograhy. We will describe how SE and AFM can be combined to strengthen the reliability of the determination of thickness and, as a consequence, of the optical properties of films. Examples will be discussed, taken from recent experiments aimed to integrate SE and AFM nanolithography applied to SAMs and nano layers of biological interest. By analysing in detail the changes of the spectroscopic features of compact versus non-compact layers and correlating such changes with the post-lithography AFM analysis of surface morphology SE unravels the specific versus unspecific adsorption of biomolecules on gold surfaces functionalized with suitable SAMs.


Spectroscopic ellipsometry Surface optical spectroscopy Self- assembled monolayers Ultrathin biomolecular films Atomic force microscopy Nanolithography Nanografting Bio-molecule specific immobilization Label-free detection 



The authors acknowledge funding from the Italian Ministry of Education (FIRB grant RBAP11ETKA-005). M.C. thanks all the people who collaborated along the years to his SE research on ultrathin organic an biologic films and in particular Mirko Prato and Chiara Toccafondi.


  1. 1.
    K.L. Prime, G.M. Whitesides, Science 252, 1164 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Hucknall, S. Rangarajan, A. Chilkoti, Adv. Mater. 21, 2441 (2009)CrossRefGoogle Scholar
  4. 4.
    R.K. Smith, P.A. Lewis, P.S. Weiss, Prog. Surf. Sci. 75, 1 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Smith, K.-B. Lee, Q. Wang, M.G. Finn, J.E. Johnson, M. Mrksich, C.A. Mirkin, Nano Lett. 3, 883 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    F. Terzi, L. Pasquali, R. Seeber, Anal. Bioanal. Chem. 405, 1513 (2013)CrossRefGoogle Scholar
  7. 7.
    L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Langmuir 14, 5636 (1998)CrossRefGoogle Scholar
  8. 8.
    D.J. Vanderah, R.J. Vierling, M.L. Walker, Langmuir 25, 5026 (2009)CrossRefGoogle Scholar
  9. 9.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977)Google Scholar
  10. 10.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007)CrossRefGoogle Scholar
  11. 11.
    C. Pale-Grosdemange, E.S. Simon, K.L. Prime, G.M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991)CrossRefGoogle Scholar
  12. 12.
    H. Arwin, D.E. Aspnes, Thin Solid Films 113, 101 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    E.A. Irene, Solid State Electron. 45, 1207 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    M. Prato, R. Moroni, F. Bisio, R. Rolandi, L. Mattera, O. Cavalleri, M. Canepa, J. Phys. Chem. C 112, 3899 (2008)CrossRefGoogle Scholar
  15. 15.
    H.G. Tompkins, T. Tiwald, C. Bungay A.E. Hooper, J. Vac. Sci. Technol. A 24, 1605 (2006)Google Scholar
  16. 16.
    G. Gonella, O. Cavalleri, I. Emilianov, L. Mattera, M. Canepa, R. Rolandi, Mater. Sci. Eng. C 22, 359 (2002)CrossRefGoogle Scholar
  17. 17.
    L. Pasquali, F. Terzi, R. Seeber, S. Nannarone, D. Datta, C. Dablemont, H. Hamoudi, M. Canepa, V.A. Esaulov, Langmuir 27, 4713 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Pasquali, S. Mukherjee, F. Terzi, A. Giglia, N. Mahne, K. Koshmak, V.A. Esaulov, C. Toccafondi, M. Canepa, S. Nannarone, Phys. Rev. B 89, 045401 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    F. Bordi, M. Prato, O. Cavalleri, C. Cametti, M. Canepa, A. Gliozzi, J. Phys. Chem. B 108, 20263 (2004)CrossRefGoogle Scholar
  20. 20.
    K.B. Rodenhausen, T. Kasputis, A.K. Pannier, J.Y. Gerasimov, R.Y. Lai, M. Solinsky, T.E. Tiwald, H. Wang, A. Sarkar, T. Hofmann, N. Ianno, M. Schubert, Review of Scientific Instruments 82, 103111 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    This topic is amply treated in Chapter 10 of this book by K.B. Rodenhausen, D. Schmidt, C. Rice, T. Hofmann, E. Schubert, M. SchubertGoogle Scholar
  22. 22.
    T. Gesang, D. Fanter, R. Hoper, W. Possart, O.-D. Hennemann, Surf. Interface Anal. 23, 797 (1995)CrossRefGoogle Scholar
  23. 23.
    N.A. Geisse, Mater. Today 12, 40 (2009)CrossRefGoogle Scholar
  24. 24.
    I. Kopf, C. Grunwald, E. Bründermann, L. Casalis, G. Scoles, M. Havenith, J. Phys. Chem. C 114, 1306 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Lu, M. Jin, M.A. Belkin, Nat. Photonics 8, 307 (2014)Google Scholar
  26. 26.
    G.-Y. Liu, S. Xu, Y. Qian, Acc. Chem. Res. 33, 457 (2000)CrossRefGoogle Scholar
  27. 27.
    M. Prato, M. Alloisio, S.A. Jadhav, A. Chincarini, T. Svaldo-Lanero, F. Bisio, O. Cavalleri, M. Canepa, J. Phys. Chem. C 113, 20683 (2009)CrossRefGoogle Scholar
  28. 28.
    C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, M. Canepa, J. Colloid Interface Sci. 364, 125 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    I. Solano, P. Parisse, F. Gramazio, O. Cavalleri, G. Bracco, M. Castronovo, L. Casalis, M. Canepa, Phys. Chem. Chem. Phys. 17, 28774 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Canepa, in Surface Science Techniques, vol. 51, Springer Series in Surface Sciences, ed. by G. Bracco, B. Holst (Springer, Berlin, 2013), p. 99Google Scholar
  31. 31.
    J.D.E. McIntyre, D.E. Aspnes, Surf. Sci. 24, 417 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    M.J. Dignam, M. Moskovits, R.W. Stobie, Trans. Faraday Soc. 67, 3306 (1971)CrossRefGoogle Scholar
  33. 33.
    A. Ulman, Chem. Rev. 96, 1533 (1996)CrossRefGoogle Scholar
  34. 34.
    C.W. Meuse, Langmuir 16, 9483 (2000)CrossRefGoogle Scholar
  35. 35.
    D. Tsankov, K. Hinrichs, E.H. Korte, R. Dietel, A. Röseler, Langmuir 18, 6559 (2002)CrossRefGoogle Scholar
  36. 36.
    H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper, J. Phys. Chem. B 108, 3777 (2004)CrossRefGoogle Scholar
  37. 37.
    D.C. Bradford, E. Hutter, J.H. Fendler, D. Roy, J. Phys. Chem. B 109, 20914 (2005)CrossRefGoogle Scholar
  38. 38.
    Z.G. Hu, P. Prunici, P. Patzner, P. Hess, J. Phys. Chem. B 110, 14824 (2006)CrossRefGoogle Scholar
  39. 39.
    P.N. Angelova, K. Hinrichs, I.L. Philipova, K.V. Kostova, D.T. Tsankov, J. Phys. Chem. C 114, 1253 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Shi, B. Hong, A.N. Parikh, R.W. Collins, D.L. Allara, Chem. Phys. Lett. 246, 90 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    K.A. Bell, L. Mantese, U. Rossow, D.E. Aspnes, J. Vac. Sci. Technol. B 15, 1205 (1997)CrossRefGoogle Scholar
  42. 42.
    W. Chen, W.L. Schaich, Surf. Sci. 218, 580 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    L.J. Richter, C.S.-C. Yang, P.T. Wilson, C.A. Hacker, R.D. van Zee, J.J. Stapleton, D.L. Allara, Y. Yao, J.M. Tour, J. Phys. Chem. B 108, 12547 (2004)CrossRefGoogle Scholar
  44. 44.
    H. Hamoudi, Z. Guo, M. Prato, C. Dablemont, W.Q. Zheng, B. Bourguignon, M. Canepa, V.A. Esaulov, Phys. Chem. Chem. Phys. 10, 6836 (2008)CrossRefGoogle Scholar
  45. 45.
    H. Hamoudi, M. Prato, C. Dablemont, O. Cavalleri, M. Canepa, V.A. Esaulov, Langmuir 26, 7242 (2010)CrossRefGoogle Scholar
  46. 46.
    H. Hamoudi, K. Uosaki, K. Ariga, V.A. Esaulov, RSC Adv. 4, 39657 (2014)CrossRefGoogle Scholar
  47. 47.
    F. Bisio, M. Prato, E. Barborini, M. Canepa, Langmuir 27, 8371 (2011)CrossRefGoogle Scholar
  48. 48.
    F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, M. Canepa, Phys. Rev. B 80, 205428 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Regarding the interaction of nanoparticles with SAMs refer to Chapter 9 of this book by T.W.H. OatesGoogle Scholar
  50. 50.
    M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, V.A. Esaulov, Phys. Chem. Chem. Phys. 15, 11559 (2013)CrossRefGoogle Scholar
  51. 51.
    J. Mårtensson, H. Arwin, Langmuir 11, 963 (1995)CrossRefGoogle Scholar
  52. 52.
    O. Neuman, R. Naaman, J. Phys. Chem. B 110, 5163 (2006)CrossRefGoogle Scholar
  53. 53.
    R. Mazzarello, A. Cossaro, A. Verdini, R. Rousseau, L. Casalis, M.F. Danisman, L. Floreano, S. Scandolo, A. Morgante, G. Scoles, Phys. Rev. Lett. 98, 016102 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    A. Cossaro, R. Mazzarello, R. Rousseau, L. Casalis, A. Verdini, A. Kohlmeyer, L. Floreano, S. Scandolo, A. Morgante, M.L. Klein, G. Scoles, Science 321, 943 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benitez, A.A. Rubert, R.C. Salvarezza, Acc. Chem. Res. 45, 1183 (2012)CrossRefGoogle Scholar
  56. 56.
    T. Burgi, Nanoscale 7, 15553 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    M. Prato, A. Gussoni, M. Panizza, O. Cavalleri, L. Mattera, M. Canepa, Phys. Status Solidi C 5, 1304 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    H. Arwin, Thin Solids Films 519, 2589 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    D.Y. Petrovykh, H. Kimura-Suda, A. Opdahl, L.J. Richter, M.J. Tarlov, L.J. Whitman, Langmuir 22, 2578 (2006)CrossRefGoogle Scholar
  60. 60.
    N. Gergel-Hackett, C.D. Zangmeister, C.A. Hacker, L.J. Richter, C.A. Richter, J. Am. Chem. Soc. 130, 4259 (2008)CrossRefGoogle Scholar
  61. 61.
    D.Y. Petrovykh, J.C. Smith, T.D. Clark, R. Stine, L.A. Baker, L.J. Whitman, Langmuir 25, 12185 (2009)CrossRefGoogle Scholar
  62. 62.
    C.A. Hacker, C.A. Richter, N. Gergel-Hackett, L.J. Richter, J. Phys. Chem. C 111, 9384 (2007)CrossRefGoogle Scholar
  63. 63.
    Z. Papa, S.K. Ramakrishnan, M. Martin, T. Cloitre, L. Zimanyi, J. Marquez, J. Budai, Z. Toth, C. Gergely, Langmuir 32, 7250 (2016)CrossRefGoogle Scholar
  64. 64.
    B. Tieke, G. Lieser, G. Wegner, J. Polym. Sci. Polym. Chem. 17, 1631 (1979)CrossRefGoogle Scholar
  65. 65.
    R.W. Carpick, T.M. Mayer, D.Y. Sasaki, A.R. Burns, Langmuir 16, 4639 (2000)CrossRefGoogle Scholar
  66. 66.
    R.W. Carpick, D.Y. Sasaki, M.S. Marcus, M.A. Eriksson, A.R. Burns, J. Phys. Condens. Matter 16, R679 (2004)ADSCrossRefGoogle Scholar
  67. 67.
    J.A. de Feijter, J.A. Benjamins, F.A. Veer, Biopolymers 17, 1759 (1978)CrossRefGoogle Scholar
  68. 68.
    P.A. Cuypers, W.T. Hermens, H.C. Hemker, Anal. Biochem. 84, 56 (1978)CrossRefGoogle Scholar
  69. 69.
    M. Malmsten, J. Colloid Interface Sci. 166, 333 (1994)ADSCrossRefGoogle Scholar
  70. 70.
    H. Elwing, Biomaterials 19, 397 (1998)CrossRefGoogle Scholar
  71. 71.
    P. Tengvall, I. Lundström, B. Liedberg, Biomaterials 19, 407 (1998)CrossRefGoogle Scholar
  72. 72.
    S. Reichelt, K.-J. Eichhorn, D. Aulich, K. Hinrichs, N. Jain, D. Appelhans, B. Voit, Colloids Surf. B 69, 169 (2009)CrossRefGoogle Scholar
  73. 73.
    C. Werner, K.-J. Eichhorn, K. Grundke, F. Simon, W. Grählert, H.J. Jacobasch, Colloids Surf. A 156, 3 (1999)CrossRefGoogle Scholar
  74. 74.
    T. Byrne, L. Lohstreter, M.J. Filiaggi, Z. Bai, J.R. Dahn, Surf. Sci. 602, 2927 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    R.J. Marsh, R.A.L. Jones, M. Sferrazza, Colloids Surf. B 23, 31 (2002)CrossRefGoogle Scholar
  76. 76.
    X.Q. Wang, Y.N. Wang, H. Xu, H.H. Shan, J.R. Lub, J. Colloid Interface Sci. 323, 18 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    S. Lousinian, S. Logothetidis, Thin Solid Films 516, 8002 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    M. Reza Nejadnik, C.D. Garcia, Colloids Surf. B 82, 253 (2011)CrossRefGoogle Scholar
  79. 79.
    D.K. Goyal, A. Subramanian, Thin Solid Films 518, 2186 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    J.L. Wehmeyer, R. Synowicki, R. Bizios, C.D. García, Mater. Sci. Eng. C 30, 277 (2010)CrossRefGoogle Scholar
  81. 81.
    C. Toccafondi, M. Prato, E. Barborini, S. Vinati, G. Maidecchi, A. Penco, O. Cavalleri, F. Bisio, M. Canepa, BioNanoScience 1, 210 (2011)CrossRefGoogle Scholar
  82. 82.
    V. Reipa, A.K. Gaigalas, V.L. Vilker, Langmuir 13, 3508 (1997)CrossRefGoogle Scholar
  83. 83.
    T. Berlind, M. Poksinski, P. Tengvall, H. Arwin, Colloids Surf. B 75, 410 (2010)CrossRefGoogle Scholar
  84. 84.
    K. Spaeth, A. Brecht, G. Gauglitz, J. Colloid Interface Sci. 196, 128 (1997)ADSCrossRefGoogle Scholar
  85. 85.
    A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotal, F. Vonderviszt, C. Hos, M. Fried, J. Gyulai, I. Barsony, Sens. Lett. 8, 730 (2010)CrossRefGoogle Scholar
  86. 86.
    H. Arwin, Thin Solid Films 377–378, 48 (2000)ADSCrossRefGoogle Scholar
  87. 87.
    H. Arwin, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (Andrew, Norwich, 2005), p. 799. (Chap. 12)Google Scholar
  88. 88.
    M.F. Mora, M. Reza Nejadnik, J.L. Baylon-Cardiel, C.E. Giacomelli, C.D. Garcia, J. Colloid Interface Sci. 346, 208 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    In this book, refer in particular to Chapters 1 by C. Cobet, 2 by H. Arwin, 5 by M. Erber et al., 6 by E. Bittrich et alGoogle Scholar
  90. 90.
    TIRE and SPR-enhanced SE are specifically addressed in Chapter 18 by H. ArwinGoogle Scholar
  91. 91.
    P. Westphal, A. Bornmann, Sens. Actuators B 84, 278 (2002)CrossRefGoogle Scholar
  92. 92.
    M. Poksinski, H. Arwin, Thin Solid Films 455–456, 716 (2004)CrossRefGoogle Scholar
  93. 93.
    A.V. Nabok, A. Tsargorodskaya, A.K. Hassan, N.F. Starodub, Appl. Surf. Sci. 246, 381 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    A. Nabok, A. Tsargorodskaya, Thin Solid Films 516, 8993 (2008)ADSCrossRefGoogle Scholar
  95. 95.
    J. Mårtensson, H. Arwin, I. Lundström, T. Ericson, J. Colloid Interface Sci. 155, 30 (1993)ADSCrossRefGoogle Scholar
  96. 96.
    J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, J. Colloid Interface Sci. 174, 79 (1995)ADSCrossRefGoogle Scholar
  97. 97.
    H. Arwin, A. Askendahl, P. Tengvall, D.W. Thompson, J.A. Woollam, Phys. Status Solidi (c) 5, 1438 (2008)ADSCrossRefGoogle Scholar
  98. 98.
    G. Sun, D.M. Rosu, X. Zhang, M. Hovestädt, S. Pop, U. Schade, D. Aulich, M. Gensch, B. Ay, H. Holzhütter, D.R.T. Zahn, N. Esser, R. Volkmer, J. Rappich, K. Hinrichs, Phys. Status Solidi (b) 247, 1925 (2010)Google Scholar
  99. 99.
    D. Aulich, O. Hoy, I. Luzinov, M. Brücher, R. Hergenröder, E. Bittrich, K.-J. Eichhorn, P. Uhlmann, M. Stamm, N. Esser, K. Hinrichs, Langmuir 26, 12926 (2010)CrossRefGoogle Scholar
  100. 100.
    C. Toccafondi, O. Cavalleri, F. Bisio, M. Canepa, Thin Solid Films 543, 78 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    C. Toccafondi, L. Occhi, O. Cavalleri, A. Penco, R. Castagna, A. Bianco, C. Bertarelli, D. Comoretto, M. Canepa, J. Mater. Chem. C 2, 4692 (2014)CrossRefGoogle Scholar
  102. 102.
    C. Akerlind, H. Arwin, F. Jakobsson, H. Kariis, K. Järrendahl, Thin Solid Films 519, 3582 (2011)ADSCrossRefGoogle Scholar
  103. 103.
    L.G. Rosa, J. Liang, J. Phys. Condens. Matter 21, 483001 (2009)Google Scholar
  104. 104.
    G.-Y. Liu, X. Song, Y. Qian, Acc. Chem. Res. 33, 457 (2000)CrossRefGoogle Scholar
  105. 105.
    L. Verstraete, J. Greenwood, B.E. Hirsch, S. de Feyter, ACS Nano 10, 10706 (2016)CrossRefGoogle Scholar
  106. 106.
    R. Haselberg, F.M. Flesch, A. Boerke, G.W. Somsen, Anal. Chim. Acta 779, 90 (2013)CrossRefGoogle Scholar
  107. 107.
    A. Bonyar, G. Harsanyi, in Proceedings of the International Spring Seminar on Electronics Technology, p. 519 (2011)Google Scholar
  108. 108.
    O. El Zubir, I. Barlow, G.J. Leggett, N.H. Williams, Nanoscale 5, 11125 (2013)ADSCrossRefGoogle Scholar
  109. 109.
    C. Lee, E.A. Josephs, J. Shao, T. Ye, J. Phys. Chem. C 116, 17625 (2012)CrossRefGoogle Scholar
  110. 110.
    V. Kolivoska, M. Gal, S. Lachmanova, P. Janda, R. Sokolova, M. Hromadova, Collect. Czechoslov. Chem. Commun. 76, 1075 (2011)CrossRefGoogle Scholar
  111. 111.
    V. Kolivoska, M. Gal, M. Hromadova, S. Lachmanova, H. Tarabkova, P. Janda, L. Pospisil, A.M. Turonova, Colloids Surf. B Biointerfaces 94, 213 (2012)CrossRefGoogle Scholar
  112. 112.
    X. Song, G. Liu, Langmuir 13, 127 (1997)CrossRefGoogle Scholar
  113. 113.
    X. Zhai, H.J. Lee, T. Tian, T. Randall Lee, J.C. Garno, Molecules 19, 13010 (2014)CrossRefGoogle Scholar
  114. 114.
    C. Staii, D.W. Wood, G. Scoles, Nano Lett. 8, 2503 (2008)ADSCrossRefGoogle Scholar
  115. 115.
    C. Rotella, G. Doni, A. Bosco, M. Castronovo, A. De Vita, L. Casalis, G.M. Pavan, P. Parisse, Nanoscale 9, 6399 (2017)CrossRefGoogle Scholar
  116. 116.
    M. Castronovo, D. Scaini, Methods Mol. Biol. (Clifton, N.J.) 749, 209 (2011)Google Scholar
  117. 117.
    S. Corvaglia, B. Sanavio, R.P. Hong Enriquez, B. Sorce, A. Bosco, D. Scaini, S. Sabella, P.P. Pompa, G. Scoles, L. Casalis, Sci. Rep. 4, 5366 (2014)ADSCrossRefGoogle Scholar
  118. 118.
    E.A. Josephs, T. Ye, J. Am. Chem. Soc. 132, 10236 (2010)CrossRefGoogle Scholar
  119. 119.
    E. Mirmontaz, M. Castronovo, C. Grunwald, F. Bano, D. Scaini, A.A. Ensafi, G. Scoles, L. Casalis, Nanoletters 8, 4134 (2008)ADSCrossRefGoogle Scholar
  120. 120.
    T. Tian, B. Singhana, L.E. Englade-Franklin, X. Zhai, T. Randall Lee, J.C. Garno, Beilstein J. Nanotechnol. 5, 26 (2014)CrossRefGoogle Scholar
  121. 121.
    I. Solano, P. Parisse, O. Cavalleri, F. Gramazio, L. Casalis, M. Canepa, Beilstein J. Nanotechnol. 7, 544 (2016)CrossRefGoogle Scholar
  122. 122.
    J. Liang, M. Castronovo, G. Scoles, J. Am. Chem. Soc. 134, 39 (2012)CrossRefGoogle Scholar
  123. 123.
    J. Te Riet, T. Smit, J.W. Gerritsen, A. Cambi, J.A.A.W. Elemans, C.G. Figdor, S. Speller, Langmuir 26, 6357 (2010)CrossRefGoogle Scholar
  124. 124.
    D. Scaini, M. Castronovo, L. Casalis, G. Scoles, ACS Nano 2, 507 (2008)CrossRefGoogle Scholar
  125. 125.
    J. Liang, G. Scoles, J. Phys. Chem. C 114, 10836 (2010)CrossRefGoogle Scholar
  126. 126.
    P. Parisse, A. Vindigni, G. Scoles, L. Casalis, J. Phys. Chem. Lett. 3, 3532 (2012)CrossRefGoogle Scholar
  127. 127.
    G. Doni, M.D. Nkoua Ngavouka, A. Barducci, P. Parisse, A. De Vita, G. Scoles, L. Casalis, G.M. Pavan, Nanoscale 5, 9988 (2013)ADSCrossRefGoogle Scholar
  128. 128.
    J.N. Ngunjiri, D.J. Stark, T. Tian, K.A. Briggman, J.C. Garno, Anal. Bioanal. Chem. 405, 1985 (2013)CrossRefGoogle Scholar
  129. 129.
    B. Sanavio, D. Scaini, C. Grunwald, G. Legname, G. Scoles, L. Casalis, ACS Nano 4, 6607 (2010)CrossRefGoogle Scholar
  130. 130.
    F. Bano, L. Fruk, B. Sanavio, M. Glettenberg, L. Casalis, C.M. Niemeyer, G. Scoles, Nano Lett. 9, 2614 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    I. Solano, P. Parisse, F. Gramazio, L. Ianeselli, B. Medagli, O. Cavalleri, L. Casalis, M. Canepa, Appl. Surf. Sci. 421, 722 (2017)ADSCrossRefGoogle Scholar
  132. 132.
    A.J. Pertsin, M. Grunze, Langmuir 16, 8829 (2000)CrossRefGoogle Scholar
  133. 133.
    R.Y. Wang, M. Himmelhaus, J. Fick, S. Herrwerth, W. Eck, M. Grunze, J. Chem. Phys. 122, 164702 (2005)ADSCrossRefGoogle Scholar
  134. 134.
    L. Li, S. Chen, J. Zheng, B.D. Ratner, S. Jiang, J. Phys. Chem. B 109, 2934 (2005)CrossRefGoogle Scholar
  135. 135.
    P.S. Johnson, M. Goel, N.L. Abbott, F.J. Himpsel, Langmuir 30, 10263 (2014)CrossRefGoogle Scholar
  136. 136.
    N. Inada, H. Asakawa, Y. Matsumoto, T. Fukuma, Nanotechnology 25, 305602 (2014)CrossRefGoogle Scholar
  137. 137.
    S. Herrwerth, W. Eck, S. Reinhardt, M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003)CrossRefGoogle Scholar
  138. 138.
    H.I. Kim, J.G. Kushmerick, J.E. Houston, B.C. Bunker, Langmuir 19, 9271 (2003)CrossRefGoogle Scholar
  139. 139.
    T. Hayashi, Y. Tanaka, Y. Koide, M. Tanaka, M. Hara, Phys. Chem. Chem. Phys. 14, 10196 (2012)CrossRefGoogle Scholar
  140. 140.
    L.K. Ista, G.P. Lopez, Langmuir 28, 12844 (2012)CrossRefGoogle Scholar
  141. 141.
    E. Hochuli, H. Döbeli, A. Schacher, J. Chromatogr. A 411, 177 (1987)CrossRefGoogle Scholar
  142. 142.
    G.B. Sigal, C. Bamdad, A. Barberis, J. Strominger, G.M. Whitesides, Anal. Chem. 68, 490 (1996)CrossRefGoogle Scholar
  143. 143.
    A. Tinazli, J. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, R. Tampé, Chem. Eur. J. 11, 5249 (2005)CrossRefGoogle Scholar
  144. 144.
    L.E. Valenti, C.P. De Pauli, C.E. Giacomelli, J. Inorg. Biochem. 100, 192 (2006)CrossRefGoogle Scholar
  145. 145.
    F. Khan, H. Mingyue, M.J. Taussig, Anal. Chem. 78, 3072 (2006)CrossRefGoogle Scholar
  146. 146.
    F. Cheng, L.J. Gamble, D.G. Castner, Anal. Chem. 80, 2564 (2008)CrossRefGoogle Scholar
  147. 147.
    J.E. Gautrot, W.T.S. Huck, M. Welch, M. Ramstedt, ACS Appl. Mater. Interfaces 2, 193 (2010)CrossRefGoogle Scholar
  148. 148.
    T.T. Le, C.P. Wilde, N. Grossman, A.E.G. Cass, Phys. Chem. Chem. Phys. 13, 5271 (2011)CrossRefGoogle Scholar
  149. 149.
    L. Schmitt, M. Ludwig, H.E. Gaub, R. Tampé, Biophys. J. 78, 3275 (2000)CrossRefGoogle Scholar
  150. 150.
    G.J. Wegner, H.J. Lee, G. Marriott, R.M. Corn, Anal. Chem. 75, 4740 (2003)CrossRefGoogle Scholar
  151. 151.
    V. Gaberc-Porekar, V. Menart, Chem. Eng. Technol. 28, 1306 (2005)CrossRefGoogle Scholar
  152. 152.
    G. Klenkar, R. Valiokas, I. Lundström, A. Tinazli, R. Tampé, J. Piehler, B. Liedberg, Anal. Chem. 78, 3643 (2006)CrossRefGoogle Scholar
  153. 153.
    Y.-C. Li, Y.-S. Lin, P.-J. Tsai, C.-T. Chen, W.-Y. Chen, Y.-C. Chen, Anal. Chem. 79, 7519 (2007)CrossRefGoogle Scholar
  154. 154.
    S.H. Kim, M. Jeyakumar, J.A. Katzenellenbogen, J. Am. Chem. Soc. 129, 13254 (2007)CrossRefGoogle Scholar
  155. 155.
    P. Jain, L. Sun, J. Dai, G.L. Baker, M.L. Bruening, Biomacromolecules 8, 3102 (2007)CrossRefGoogle Scholar
  156. 156.
    I. Nakamura, A. Makino, M. Ohmae, S. Kimura, Macromol. Biosci. 10, 1265 (2010)CrossRefGoogle Scholar
  157. 157.
    W. Shen, H. Zhong, D. Neff, M.L. Norton, J. Am. Chem. Soc. 131, 6660 (2009)CrossRefGoogle Scholar
  158. 158.
    C.-H.K. Wang, S. Jiang, S.H. Pun, Langmuir 26, 15445 (2010)CrossRefGoogle Scholar
  159. 159.
    S. Uchinomiya, H. Nonaka, S. Wakayama, A. Ojida, I. Hamachi, Chem. Commun. 49, 5022 (2013)CrossRefGoogle Scholar
  160. 160.
    M. Sosna, H. Boer, P.N. Bartlett, ChemPhysChem 14, 2225 (2013)CrossRefGoogle Scholar
  161. 161.
    Y.-T. Lai, Y.-Y. Chang, L. Hu, Y. Yang, A. Chao, Z.-Y. Du, J.A. Tanner, M.-L. Chye, C. Qian, K.-M. Ng, H. Li, H. Sun, Proc. Natl. Acad. Sci. 112, 2948 (2015)Google Scholar
  162. 162.
    T. Panavas, C. Sanders, T.R. Butt, in SUMO Protocols, vol. 497, Methods in Molecular Biology, ed. by H.D. Ulrich (Humana Press, New York, 2009), p. 303Google Scholar
  163. 163.
    M.P. Malakhov, M.R. Mattern, O.A. Malakhova, M. Drinker, S.D. Weeks, T.R. Butt, J. Struct. Funct. Genomics 5, 75 (2004)CrossRefGoogle Scholar
  164. 164.
    P. Bayer, A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke, J. Becker, J. Mol. Biol. 280, 275 (1998)CrossRefGoogle Scholar
  165. 165.
    J. Song, Z. Zhang, H. Weidong, Y. Chen, J. Biol. Chem. 280, 40122 (2005)CrossRefGoogle Scholar
  166. 166.
    I. Solano, Optical spectroscopy methods for the development of biosensors, Ph.D. thesis, University of Genova, 2016Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pietro Parisse
    • 1
  • Ilaria Solano
    • 2
  • Michele Magnozzi
    • 2
  • Francesco Bisio
    • 3
  • Loredana Casalis
    • 1
  • Ornella Cavalleri
    • 2
  • Maurizio Canepa
    • 2
  1. 1.Elettra Sincrotrone Trieste S.C.p.A.Basovizza, TriesteItaly
  2. 2.OPTMATLAB, Department of PhysicsUniversity of GenovaGenovaItaly
  3. 3.Istituto CNR-SPINGenovaItaly

Personalised recommendations