Polarons in Conjugated Polymers

  • Christoph Cobet
  • Jacek Gasiorowski
  • Dominik Farka
  • Philipp Stadler
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


Conjugated polymers and polymer blends are key components in the development of organic electronics and (photo-) electrocatalysis. In particular, the possibility to produce organic but highly conducting films make these compounds very attractive. Therefore, enormous effort was put in the understanding and improvement of the electrical conductivity of polymer films. Conjugated polymers in their pristine form are mostly insulating or rarely semiconducting. The alternating single and double bonds in each \(\pi \)-conjugated polymer chain give rise to the formation of a band gap; the HOMO-LUMO gap. Semiconducting or conducting properties are obtained for example by optical, chemical, or electrochemical doping. The doping can be permanent as in the case of the polymer blends like PEDOT:PSS or short term. In both cases, the injected charge carriers commonly self-localize due to the strong electron-phonon interaction which yields in the formation of new quasi-particles called polarons. As a result, characteristic sub-band gap excitations emerge in optical measurements which extend from UV to the medium infrared spectral range. Optical methods in general, and spectroscopic ellipsometry in particular, are thus apparent characterization methods in scientific investigations as well as candidates to solve in-line monitoring and control issues. In the following section, we will briefly review the basic concepts of polymer “doping”, the formation of polarons and the origin of sub-band gap excitations. In a survey of methods we will shortly discuss ATR-FTIR and transmission/reflection spectroscopy results. A specific attention will be drawn on the in-situ spectroelectrochemical characterization, since electrochemical doping provides control on the doping level and allows e.g. a quantification of exchanged charges. In-situ ellipsometry could be used to monitor respective changes in the polymer optoelectronic properties. We will not aim for an overview about known types of conducting polymers in general or state of the art developments in organic electronics. The focus is a discussion of the physics of UV-VIS-MIR polaronic and electronic excitations as well as state-of-the-art ellipsometric characterization.



The authors would like to thank Kurt Hingerl, Niyazi S. Sariciftci, Helmut Neugebauer, and Reghu Menon for their valuable comments and enlightening discussions. Furthermore, we acknowledge manifold contributions of Achim W. Hassel, Günther Knör, Jan Philipp Kollender, Andrei I. Mardare, Kerstin Oppelt, Thomas Plach, Stefanie Schlager, Matthew S. White, Karin Wiesauer, and Cigdem Yumusak for the results presented here.


  1. 1.
    Handbook of Conducting Polymers, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, vol. I–II, 3rd edn. ed. by T.A. Skotheim, J.R. Reynolds (CRC Press, Boca Raton, London, New York, 2006)Google Scholar
  2. 2.
    J.L. Brédas, G.B. Street, B. Thémans, J.M. André, J. Chem. Phys. 83, 1323 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    E. Bundgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007)CrossRefGoogle Scholar
  4. 4.
    D.T. Haar, Collected Papers of L.D. Landau (Gordon and Breach, Science Publishers, New York, London, Paris, 1965)Google Scholar
  5. 5.
    H. Fröhlich, Adv. Phys. 3, 325 (1954)ADSCrossRefGoogle Scholar
  6. 6.
    J.T. Devreese, J. Phys. Condens. Matter 19, 26 (2006)Google Scholar
  7. 7.
    J.T. Devreese, A.S. Alexandrov, Rep. Prog. Phys. 72, 066501 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Polarons in Advanced Materials, ed. by A.S. Alexandrov (Springer, Dordrecht, 2007)Google Scholar
  9. 9.
    D. Emin, Polarons (Cambridge University Press, Cambridge, New York, Melbourne, 2013)Google Scholar
  10. 10.
    J.L. Brédas, G.B. Street, Acc. Chem. Res. 18, 309 (1985)CrossRefGoogle Scholar
  11. 11.
    A.J. Heeger, N.S. Sariciftci, E.B. Namdas, Semiconducting and Metallic Polymers (Oxford University Press, Oxford and New York, 2010)Google Scholar
  12. 12.
    S.-I. Kuroda, Int. J. Mod. Phys. B 9, 221 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    F.M. Peeters, J.T. Devreese, Phys. Rev. B 36, 4442 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    D. Beljonne et al., Adv. Funct. Mater. 11, 229 (2001)CrossRefGoogle Scholar
  15. 15.
    S.N. Klimin, J. Tempere, J.T. Devreese, Phys. Rev. B 94, 1 (2016)CrossRefGoogle Scholar
  16. 16.
    J.L. Brédas, R.R. Chance, R. Silbey, Phys. Rev. B 26, 5843 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    D. Bertho, C. Jouanin, Phys. Rev. B 35, 626 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Bakulin et al., Science (80-. ) 335, 1340 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    R. Österbacka, C. An, X.M. Jiang, Z. Vardeny, Science (80-. ) 287, 839 (2000)Google Scholar
  20. 20.
    O. Bubnova, X. Crispin, Energy Environ. Sci. 5, 9345 (2012)CrossRefGoogle Scholar
  21. 21.
    C.M. Pochas, F.C. Spano, J. Chem. Phys. 140, 244902 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S. Stafström et al., Phys. Rev. Lett. 59, 1464 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Thouless, Phys. Rev. Lett. 39, 1167 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    B.I. Shklovskii, A.L. Efros, in Electronic Properties of Doped Semiconductors, vol. 45, Springer Series in Solid-State Sciences, ed. by M. Cardona (Springer, Berlin, Heidelberg, 1984)CrossRefGoogle Scholar
  25. 25.
    P.R. Somani, S. Radhakrishnan, Mater. Chem. Phys. 77, 117 (2002)CrossRefGoogle Scholar
  26. 26.
    H. Shirakawa et al., J. Chem. Soc. Chem. Commun. 578 (1977)Google Scholar
  27. 27.
    A.J. Heeger, Angew. Chemie 40, 2591 (2001)CrossRefGoogle Scholar
  28. 28.
    J. Gasiorowski et al., J. Phys. Chem. C 117, 2584 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Taguchi et al., J. Am. Chem. Soc. 128, 3313 (2006)CrossRefGoogle Scholar
  30. 30.
    R. Ludwig, Angew. Chemie 115, 3580 (2003)CrossRefGoogle Scholar
  31. 31.
    C. Cobet et al., Submitt. to Adv. Mater. Interfaces (2017)Google Scholar
  32. 32.
    U. Zhokhavets, G. Gobsch, H. Hoppe, N.S. Sariciftci, Thin Solid Films 451–452, 69 (2004)CrossRefGoogle Scholar
  33. 33.
    U. Zhokhavets et al., Chem. Phys. Lett. 418, 347 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    M. Campoy-Quiles, P.G. Etchegoin, D.D.C. Bradley, Phys. Rev. B 72, 045209 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    T. Tsumuraya, J.-H. Song, A. Freeman, Phys. Rev. B 86, 075114 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    E. Lioudakis, A. Othonos, I. Alexandrou, Y. Hayashi, Appl. Phys. Lett. 91, 111117 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Kim et al., Nat. Mater. 5, 197 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    P.G. Karagiannidis et al., Mater. Chem. Phys. 129, 1207 (2011)CrossRefGoogle Scholar
  39. 39.
    Z. Vardeny et al., Phys. Rev. Lett. 56, 671 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    J. Gasiorowski et al., J. Phys. Chem. C 118, 16919 (2014)CrossRefGoogle Scholar
  42. 42.
    C. Enengl et al., ChemPhysChem 17, 3836 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Furukawa, J. Phys. Chem. 100, 15644 (1996)CrossRefGoogle Scholar
  44. 44.
    J. Gasiorowski, Dissertation, Johannes Kepler University Linz (2013)Google Scholar
  45. 45.
    Handbook of Optical Constants of Solids, vol. 111, ed. by E.D. Palik (Academic Press, San Diego, Chestnut Hill, 1998)Google Scholar
  46. 46.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 3rd edn. (Springer, Berlin, Heidelberg, New York, 1996)CrossRefGoogle Scholar
  47. 47.
    E. Ehrenfreund, Z. Vardeny, O. Brafman, B. Horovitz, Phys. Rev. B 36, 1535 (1987)ADSCrossRefGoogle Scholar
  48. 48.
    A. Girlando, A. Painelli, Z.G. Soos, J. Chem. Phys. 98, 7459 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    J. Gasiorowski, A.I. Mardare, N.S. Sariciftci, A.W. Hassel, J. Electroanal. Chem. 691, 77 (2013)CrossRefGoogle Scholar
  50. 50.
    N.S. Sariciftci et al., J. Chem. Phys. 96, 7164 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    A.K. Agrawal, S.A. Jenekhe, Chem. Mater. 8, 579 (1996)CrossRefGoogle Scholar
  52. 52.
    H. Neugebauer et al., J. Chem. Phys. 110, 12108 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    C. Kvarnström et al., Synth. Met. 101, 66 (1999)CrossRefGoogle Scholar
  54. 54.
    A.W. Hassel, K. Fushimi, M. Seo, Electrochem. Commun. 1, 180 (1999)CrossRefGoogle Scholar
  55. 55.
    T. Erb et al., Adv. Funct. Mater. 15, 1193 (2005)CrossRefGoogle Scholar
  56. 56.
    H.G. Tompkins, A User ’s Guide to Ellipsometry (Academic Press Inc, San Diego, 1993)Google Scholar
  57. 57.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland Publishing Company, Amsterdam, New York, Oxford, 1987)Google Scholar
  58. 58.
    P. Yeh, Optical Waves in Layered Media (Wiley, New Yorke, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1988)Google Scholar
  59. 59.
    M.V. Klein, T.E. Furtak, Optik (Springer, Berlin, Heidelberg, 1988)CrossRefGoogle Scholar
  60. 60.
    M. Schubert, Phys. Rev. B 53, 4265 (1996)ADSCrossRefGoogle Scholar
  61. 61.
    H. Tompkins, E.A. Irene, Handbook of Ellipsometry (Springer, Heidelberg, 2005)CrossRefGoogle Scholar
  62. 62.
    C. Cobet et al., Sci. Rep. 6, 35096 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    S. Panero, S. Passerini, B. Scrosati, Mol. Cryst. Liq. Cryst. 229, 97 (1993)CrossRefGoogle Scholar
  64. 64.
    P. Kar, Doping Conjugated Polymers (Wiley, Hoboken, 2013)CrossRefGoogle Scholar
  65. 65.
    B. Horovitz, Solid State Commun. 88, 983 (1993)ADSCrossRefGoogle Scholar
  66. 66.
    J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors (Springer, Berlin, Heidelberg, 1996)CrossRefGoogle Scholar
  67. 67.
    D. Jérome, H.J. Schulz, Adv. Phys. 31, 299 (2006)ADSCrossRefGoogle Scholar
  68. 68.
    C. Cobet, E. Speiser, in Defin. Anal. Opt. Prop. Mater. Nanoscale A Collect. Thoughts, Opin. Ideas Data that Have Matur. Over Years Exploit. Ellipsom. a Range Characterisation Needs, ed. by M. Losurdo (Ges. für Mikro- und Nanoelektronik, Wien, 2010)Google Scholar
  69. 69.
    D.K. Campbell, A.R. Bishop, K. Fesser, Phys. Rev. B 26, 6862 (1982)ADSCrossRefGoogle Scholar
  70. 70.
    S.E. Shaheen et al., Appl. Phys. Lett. 78, 841 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    H. Hoppe, N.S. Sariciftci, D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002)CrossRefGoogle Scholar
  72. 72.
    J. Gasiorowski et al., J. Phys. Chem. C 117, 22010 (2013)CrossRefGoogle Scholar
  73. 73.
    C. Duan, F. Huang, Y. Cao, J. Mater. Chem. 22, 10416 (2012)CrossRefGoogle Scholar
  74. 74.
    H.-Y. Chen et al., Nat. Photonics 3, 649 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    J. Hou et al., J. Am. Chem. Soc. 131, 15586 (2009)CrossRefGoogle Scholar
  76. 76.
    J. Gasiorowski, A.I. Mardare, N.S. Sariciftci, A.W. Hassel, Electrochim. Acta 113, 834 (2013)CrossRefGoogle Scholar
  77. 77.
    K.G. Jespersen et al., J. Chem. Phys. 121, 12613 (2004)ADSCrossRefGoogle Scholar
  78. 78.
    J.L. Brédas, J.C. Scott, K. Yakushi, G.B. Street, Phys. Rev. B 30, 1023 (1984)ADSCrossRefGoogle Scholar
  79. 79.
    M.J. Nowak, S.D.D.V. Rughooputh, S. Hotta, A.J. Heeger, Macromolecules 20, 965 (1987)ADSCrossRefGoogle Scholar
  80. 80.
    N.J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967)Google Scholar
  81. 81.
    M. Milosevic, in Internal Reflection and ATR Spectroscopy, vol. 176, Chemical Analysis, ed. by M.E. Vitha (Wiley, Hoboken, New Jersey, 2012)CrossRefGoogle Scholar
  82. 82.
    M. Poksinski, H. Arwin, Proteins Solid-Liquid Interfaces, Principles and Practice (Springer, Berlin, Heidelberg, 2006), pp. 105–118CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Surface and Nanoanalytics (ZONA)Johannes Kepler University LinzLinzAustria
  2. 2.Linz Institute of Organic Solar Cells (LIOS)Johannes Kepler University LinzLinzAustria
  3. 3.EV Group E.Thallner GmbHSt. Florian am InnAustria

Personalised recommendations