Conjugated Polymers: Relationship Between Morphology and Optical Properties

Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)

Abstract

In this chapter we will start by briefly summarizing the basic concepts of the electronic structure of conjugated polymers. This will enable the discussion of the relevant descriptions of the dielectric function. We will relate these descriptions to the model parameterizations which are used in advanced ellipsometric analysis of thin films such as those used in devices for organic photovoltaics (OPVs) and light emitting diodes (OLEDs). Amongst other things, such parametric descriptions are useful to deal with structural changes in conjugated polymer thin films. Once the models are presented, we will provide representative examples of the nexus between morphology and optical constants, and how the latter can be employed to infer aspects of the former. First, we will discuss how chain conformation affects the optical properties. Then, we will explain the anisotropic behavior of conjugated polymer films due to their intrinsic molecular anisotropy and review different cases (f. i., oriented films or semicrystalline polymers). We will also describe structural changes that occur upon blending polymers with fullerenes and concomitant variations of the optical properties. Here we will focus on state of the art low band gap polymers mixed with fullerenes. Finally, real-time ellipsometric experiments in which these structure-property relationships can be exploited will be presented.

Notes

Acknowledgements

The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through grant MAT2015-70850-P and the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496).

References

  1. 1.
    A. Köhler, H. Bässler, Electronic Processes in Organic Semiconductors (Wiley, New York, 2015)Google Scholar
  2. 2.
    S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324–1338 (2007)Google Scholar
  3. 3.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Nature 347, 539–541 (1990)Google Scholar
  4. 4.
    K.-J. Baeg, M. Caironi, Y.-Y. Noh, Adv. Mater. 25, 4210–4244 (2013)Google Scholar
  5. 5.
    J. Liu, Y. Shi, Y. Yang, Adv. Funct. Mater. 11, 420–424 (2001)Google Scholar
  6. 6.
    M. Campoy-Quiles, M.I. Alonso, D.D.C. Bradley, L.J. Richter, Adv. Funct. Mater. 24, 2116–2134 (2014)Google Scholar
  7. 7.
    K. Koynov, A. Bahtiar, T. Ahn, R.M. Cordeiro, H.-H. Horhold, C. Bubeck, Macromolecules 39, 8692–8698 (2006)Google Scholar
  8. 8.
    U. Zhokhavets, G. Gobsch, H. Hoppe, N.S. Sariciftci, Thin Solid Films 451, 69–73 (2004)Google Scholar
  9. 9.
    M. Campoy-Quiles, M. Schmidt, D. Nassyrov, O. Peña, A.R. Goñi, M.I. Alonso, M. Garriga, Thin Solid Films 519, 2678–2681 (2011)Google Scholar
  10. 10.
    T. Wang, A.D.F. Dunbar, P.A. Staniec, A.J. Pearson, P.E. Hopkinson, J.E. MacDonald, S. Lilliu, C. Pizzey, N.J. Terrill, A.M. Donald, A.J. Ryan, R.A.L. Jones, D.G. Lidzey, Soft Matter 6, 4128–4134 (2010)Google Scholar
  11. 11.
    P. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2010)Google Scholar
  12. 12.
    U. Rauscher, H. Bässler, D.D.C. Bradley, M. Hennecke, Phys. Rev. B 42, 9830–9836 (1990)Google Scholar
  13. 13.
    S. Heun, R.F. Mahrt, A. Greiner, U. Lemmer, H. Bassler, D.A. Halliday, D.D.C. Bradley, P.L. Burn, A.B. Holmes, J. Phys. Condens. Matter 5, 247–260 (1993)Google Scholar
  14. 14.
    J. Cornil, D. Beljonne, Z. Shuia, T.W. Hagler, I. Campbell, D.D.C. Bradley, J.L. Brédas, C.W. Spangler, K. Müllen, Chem. Phys. Lett. 247, 425–432 (1995)Google Scholar
  15. 15.
    K. Pichler, D.A. Halliday, D.D.C. Bradley, P.L. Burn, R.H. Friend, A.B. Holmes, J. Phys. Condens. Matter 5, 7155 (1993)Google Scholar
  16. 16.
    S. Giri, C.H. Moore, J.T. Mcleskey, P. Jena, J. Phys. Chem. C 118, 13444–13450 (2014)Google Scholar
  17. 17.
    M. Campoy-Quiles, V. Randon, M. Mróz, M. Jarzaguet, M. Garriga, J. Cabanillas-González, Org. Photonics Photovolt. 1, 11–23 (2013)Google Scholar
  18. 18.
    D. Raithel, S. Baderschneider, T.B. de Queiroz, R. Lohwasser, J. Köhler, M. Thelakkat, S. Kümmel, R. Hildner, Macromol. 49, 9553–9560 (2016)Google Scholar
  19. 19.
    F.C. Spano, C. Silva, Annu. Rev. Phys. Chem. 65, 477–500 (2014)Google Scholar
  20. 20.
    F.C. Spano, J. Chem. Phys. 122, 234701 (2005)Google Scholar
  21. 21.
    M.S. Vezie, S. Few, I. Meager, G. Pieridou, B. Dörling, R.S. Ashraf, A.R. Goñi, H. Bronstein, I. McCulloch, S.C. Hayes, M. Campoy-Quiles, J. Nelson, Nat. Mater. 15, 746–753 (2016)Google Scholar
  22. 22.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)Google Scholar
  23. 23.
    H.G. Tompkins, E.A. Irene, Handbook of Ellipsometry (William Andrew Publishing, New York, 2005)Google Scholar
  24. 24.
    M. Garriga, M.I. Alonso, C. Domínguez, Phys. Stat. Sol. B 215, 247–251 (1999)Google Scholar
  25. 25.
    H. Arwin, R. Jansson, Electrochim. Acta 39, 211–215 (1994)Google Scholar
  26. 26.
    Z.T. Liu, H.S. Kwok, A.B. Djurisic, J. Phys. D Appl. Phys. 37, 678 (2004)Google Scholar
  27. 27.
    M. Campoy-Quiles, J. Nelson, D.D.C. Bradley, P.G. Etchegoin, Phys. Rev. B 76, 235206 (2007)Google Scholar
  28. 28.
    D.E. Aspnes, in Handbook on Semiconductors chap. 4A, ed. by T.S. Moss, M. Balkanski (North-Holland, Amsterdam, 1980), pp. 110–154Google Scholar
  29. 29.
    U. Zhokhavets, R. Goldhahn, G. Gobsch, W. Schliefke, Synth. Met. 138, 491–495 (2003)Google Scholar
  30. 30.
    M. Campoy-Quiles, Ph.D Thesis, Imperial College of London (2005)Google Scholar
  31. 31.
    S.F. Alvarado, P.F. Seidler, D.G. Lidzey, D.D.C. Bradley, Phys. Rev. Lett. 81, 1082–1085 (1998)Google Scholar
  32. 32.
    M. Tammer, A.P. Monkman, Adv. Mater. 14, 210–212 (2002)Google Scholar
  33. 33.
    C.M. Ramsdale, N.C. Greenham, Adv. Mater. 14, 212–215 (2002)Google Scholar
  34. 34.
    M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, F. Babudri, D. Colangiuli, G.M. Farinola, F. Naso, Macromol. 36, 4492–4497 (2003)Google Scholar
  35. 35.
    C. Sutton, T. Körzdörfer, M.T. Gray, M. Brunsfeld, R.M. Parrish, C.D. Sherrill, J.S. Sears, J.-L. Brédas, J. Chem. Phys. 140, 054310 (2014)Google Scholar
  36. 36.
    S. Wood, J. Wade, M. Shahid, E. Collado-Fregoso, D.D.C. Bradley, J.R. Durrant, M. Heeney, J.-S. Kim, Energy Environ. Sci. 8, 3222–3232 (2015)Google Scholar
  37. 37.
    H. Bronstein, Z. Chen, R.S. Ashraf, W. Zhang, J. Du, J.R. Durrant, P.S. Tuladhar, K. Song, S.E. Watkins, Y. Geerts, M.M. Wienk, R.A.J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, J. Am. Chem. Soc. 133, 3272–3275 (2011)Google Scholar
  38. 38.
    I. Meager, R.S. Ashraf, S. Mollinger, B.C. Schroeder, H. Bronstein, D. Beatrup, M.S. Vezie, T. Kirchartz, A. Salleo, J. Nelson, I. McCulloch, J. Am. Chem. Soc. 135, 11537–11540 (2013)Google Scholar
  39. 39.
    M. Campoy-Quiles, G. Heliotis, R.D. Xia, M. Ariu, M. Pintani, P. Etchegoin, D.D.C. Bradley, Adv. Funct. Mater. 15, 925–933 (2005)Google Scholar
  40. 40.
    W. Chunwaschirasiri, B. Tanto, D.L. Huber, M.J. Winokur, Phys. Rev. Lett. 94, 107402 (2005)Google Scholar
  41. 41.
    A. Perevedentsev, N. Chander, J.-S. Kim, D.D.C. Bradley, J. Pol. Sci. Part B Pol. Phys. 54, 1995–2006 (2016)Google Scholar
  42. 42.
    S.H. Chen, A.C. Su, C.H. Su, S.A. Chen, Macromol. 38, 379–385 (2005)Google Scholar
  43. 43.
    A.J. Morfa, T.M. Barnes, A.J. Ferguson, D.H. Levi, G. Rumbles, K.L. Rowlen, J. van de Lagemaat, J. Pol. Sci. B Pol. Phys. 49, 186–194 (2011)Google Scholar
  44. 44.
    M.C. Gurau, D.M. Delongchamp, B.M. Vogel, E.K. Lin, D.A. Fischer, S. Sambasivan, L.J. Richter, Langmuir 23, 834–842 (2007)Google Scholar
  45. 45.
    J. Clark, J.-F. Chang, F.C. Spano, R.H. Friend, C. Silva, Appl. Phys. Lett. 94, 163306 (2009)Google Scholar
  46. 46.
    M.I. Alonso, M. Garriga, Thin Solid Films 455–456, 124–131 (2004)Google Scholar
  47. 47.
    B. Dörling, A. Sánchez-Díaz, O. Arteaga, A. Veciana, M.I. Alonso, M. Campoy-Quiles, Adv. Opt. Mater. 5, 1700276 (2017).  https://doi.org/10.1002/adom.201700276
  48. 48.
    M. Brinkmann, J. Pol. Sci. Part B Pol. Phys. 49, 1218–1233 (2011)Google Scholar
  49. 49.
    D.M. DeLongchamp, R.J. Kline, E.K. Lin, D.A. Fischer, L.J. Richter, L.A. Lucas, M. Heeney, I. McCulloch, J.E. Northrup, Adv. Mater. 19, 833 (2007)Google Scholar
  50. 50.
    K. Vandewal, K. Tvingstedt, A. Gadisa, O. Ingänas, J.V. Manca, Nat. Mater. 8, 904–909 (2009)Google Scholar
  51. 51.
    M. Campoy-Quiles, C. Müller, M. Garriga, E. Wang, O. Inganäs, M.I. Alonso, Thin Solid Films 571, Part 3, 371–376 (2014)Google Scholar
  52. 52.
    M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158–164 (2008)Google Scholar
  53. 53.
    S. Engmann, V. Turkovic, P. Denner, H. Hoppe, G. Gobsch, J. Pol. Sci. B Pol. Phys. 50, 1363–1373 (2012)Google Scholar
  54. 54.
    S. Engmann, V. Turkovic, G. Gobsch, H. Hoppe, Adv. Ener. Mater. 1, 684–689 (2011)Google Scholar
  55. 55.
    A.A.Y. Guilbert, M. Schmidt, A. Bruno, J. Yao, S. King, S.M. Tuladhar, T. Kirchartz, M.I. Alonso, A.R. Goñi, N. Stingelin, S.A. Haque, M. Campoy-Quiles, J. Nelson, Adv. Funct. Mater. 24, 6972–6980 (2014)Google Scholar
  56. 56.
    C. Müller, L.M. Andersson, O. Peña-Rodriguez, M. Garriga, O. Inganäs, M. Campoy-Quiles, Macromolecules 46, 7325–7331 (2013)Google Scholar
  57. 57.
    M. Campoy-Quiles, M. Sims, P.G. Etchegoin, D.D.C. Bradley, Macromolecules 39, 7673–7680 (2006)Google Scholar
  58. 58.
    A. Roigé, M. Campoy-Quiles, J.O. Ossó, M.I. Alonso, L.F. Vega, M. Garriga, Synth. Met. 161, 2570–2574 (2012)Google Scholar
  59. 59.
    C. Müller, J. Bergqvist, K. Vandewal, K. Tvingstedt, A.S. Anselmo, R. Magnusson, M.I. Alonso, E. Moons, H. Arwin, M. Campoy-Quiles, O. Inganäs, J. Mater. Chem. 21, 10676–10684 (2011)Google Scholar
  60. 60.
    D. Leman, M.A. Kelly, S. Ness, S. Engmann, A. Herzing, C. Snyder, H.W. Ro, R.J. Kline, D.M. DeLongchamp, L.J. Richter, Macromolecules 48, 383–392 (2015)Google Scholar
  61. 61.
    H.W. Ro, J.M. Downing, S. Engmann, A.A. Herzing, D.M. DeLongchamp, L.J. Richter, S. Mukherjee, H. Ade, M. Abdelsamie, L.K. Jagadamma, A. Amassian, Y. Liu, H. Yan, Energy Environ. Sci. 9, 2835–2846 (2016)Google Scholar
  62. 62.
    S. Logothetidis, Method for in-line determination of film thickness and quality during printing processes for the production of organic electronics (2014), US Patent App. 14/113,125Google Scholar
  63. 63.
    M.V. Madsen, K.O. Sylvester-Hvid, B. Dastmalchi, K. Hingerl, K. Norrman, T. Tromholt, M. Manceau, D. Angmo, F.C. Krebs, J. Phys. Chem. C 115, 10817–10822 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain

Personalised recommendations