Advertisement

Optical Dielectric Properties of Thin Films Formed by Organic Dye Aggregates

  • Katy Roodenko
  • Peter Thissen
Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)

Abstract

Molecular aggregates – the assemblies of dye molecules-possess distinct optical characteristics as compared to their constituent monomeric units. Strong resonant interactions between the molecular electronic transitions of the monomers result in an intense and narrow absorption band at a frequency that depends on the relative orientation of the monomers within the aggregates. The strong absorption bands of these materials makes them attractive for a range of optoelectronic applications. We review the experimental and computational work dedicated to the determination of the optical dielectric functions of molecular aggregates, with an outlook to applications in device engineering.

References

  1. 1.
    F. Würthner, T.E. Kaiser, C.R. Saha-Möller, Angew. Chem. Int. Ed. 50, 3376 (2011)CrossRefGoogle Scholar
  2. 2.
    S.K. Saikin, A. Eisfeld, S. Valleau, A. Aspuru-Guzik, Nanophotonics 2, 21 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    R.C. Benson, H.A. Kues, J. Chem. Eng. Data 22, 379 (1977)CrossRefGoogle Scholar
  4. 4.
    A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, G.B. Behera, Chem. Rev. 100, 1973 (2000)CrossRefGoogle Scholar
  5. 5.
    T. Kobayashi (ed.), J-Aggregates (World Scientific, Singapore, 1996)Google Scholar
  6. 6.
    B.I. Shapiro, Russ. Chem. Rev. 63, 231 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Wang, Z. Li, D.-D. Tao, Q. Zhang, P. Zhang, D.-P. Guo, Y.-B. Jiang, Chem. Commun. 52, 12929 (2016)CrossRefGoogle Scholar
  8. 8.
    W. Liang, S. He, J. Fang, Langmuir 30, 805 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Curutchet, B. Mennucci, Chem. Rev. 117, 294 (2017)CrossRefGoogle Scholar
  10. 10.
    T.P. Osedach, A. Iacchetti, R.R. Lunt, T.L. Andrew, P.R. Brown, G.M. Akselrod, V. Bulović, Appl. Phys. Lett. 101, 113303 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    E.A. McArthur, J.M. Godbe, D.B. Tice, E.A. Weiss, J. Phys. Chem. C 116, 6136 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Kundu, A. Patra, Chem. Rev. 117, 712 (2017)CrossRefGoogle Scholar
  13. 13.
    J.L. Banal, B. Zhang, D.J. Jones, K.P. Ghiggino, W.W.H. Wong, Acc. Chxem. Res. 50, 49 (2017)CrossRefGoogle Scholar
  14. 14.
    G. Scheibe, Angew. Chem. 50, 212 (1937)CrossRefGoogle Scholar
  15. 15.
    E.E. Jelley, Nature 138, 1009 (1936)ADSCrossRefGoogle Scholar
  16. 16.
    J. Frenkel, Phys. Rev. 37, 17 (1931)ADSCrossRefGoogle Scholar
  17. 17.
    V.V. Egorov, Phys. Procedia 2, 223 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Sukharev, A. Nitzan, Cond-Mat. Phys. (2017), arXiv:170405605
  19. 19.
    V.M. Agranovich, Excitations in Organic Solids (OUP Oxford, 2009)Google Scholar
  20. 20.
    T. Förster, Radiat. Res. Suppl. 2, 326 (1960)CrossRefGoogle Scholar
  21. 21.
    M. Kasha, Radiat. Res. 20, 55 (1963)ADSCrossRefGoogle Scholar
  22. 22.
    W.T. Simpson, D.L. Peterson, J. Chem. Phys. 26, 588 (1957)ADSCrossRefGoogle Scholar
  23. 23.
    N.J. Hestand, F.C. Spano, Acc. Chem. Res. 50, 341 (2017)CrossRefGoogle Scholar
  24. 24.
    C. Guo, M. Aydin, H.-R. Zhu, D.L. Akins, J. Phys. Chem. B 106, 5447 (2002)CrossRefGoogle Scholar
  25. 25.
    H. von Berlepsch, C. Böttcher, L. Dähne, J. Phys. Chem. B 104, 8792 (2000)CrossRefGoogle Scholar
  26. 26.
    H. von Berlepsch, C. Böttcher, A. Ouart, C. Burger, S. Dähne, S. Kirstein, J. Phys. Chem. B 104, 5255 (2000)CrossRefGoogle Scholar
  27. 27.
    S. Sengupta, F. Würthner, Acc. Chem. Res. 46, 2498 (2013)CrossRefGoogle Scholar
  28. 28.
    L.P. Vernon, G.R. Seely, The Chlorophylls (Academic Press, New York, 1966)Google Scholar
  29. 29.
    G.D. Scholes, G.R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat. Chem. 3, 763 (2011)CrossRefGoogle Scholar
  30. 30.
    W.P. Inskeep, P.R. Bloom, PLANT Physiol. 77, 483 (1985)CrossRefGoogle Scholar
  31. 31.
    Q. Yan, Z. Luo, K. Cai, Y. Ma, D. Zhao, Chem. Soc. Rev. 43, 4199 (2014)CrossRefGoogle Scholar
  32. 32.
    J.L. McHale, J. Phys. Chem. Lett. 3, 587 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Cacciola, C. Triolo, O. Di Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, S. Savasta, ACS Photon. 2, 971 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Fidder, J. Knoester, D.A. Wiersma, J. Chem. Phys. 95, 7880 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    F.C. Spano, Phys. Rev. Lett. 67, 3424 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    T. Wakamatsu, S. Toyoshima, K. Saito, J. Opt. Soc. Am. B 23, 1859 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    T. Wakamatsu, K. Watanabe, K. Saito, Appl. Opt. 44, 906 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    S. Kirstein, H. Möhwald, J. Chem. Phys. 103, 826 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    V.S. Lebedev, A.S. Medvedev, D.N. Vasil’ev, D.A. Chubich, A.G. Vitukhnovsky, Q. Electron. 40, 246 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    G. Wahling, Z. Für Naturforschung A 36, (1981)Google Scholar
  41. 41.
    S. Pirotta, M. Patrini, M. Liscidini, M. Galli, G. Dacarro, G. Canazza, G. Guizzetti, D. Comoretto, D. Bajoni, Appl. Phys. Lett. 104, 051111 (2014)Google Scholar
  42. 42.
    V.V. Shelkovnikov, Z.M. Ivanova, A.I. Plekhanov, E.V. Spesivtsev, S.V. Rykhlitsky, J. Appl. Spectrosc. 76, 66 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    A.I. Plekhanov, V.V. Shelkovnikov, Opt. Spectrosc. 104, 545 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    K. Roodenko, H.M. Nguyen, L. Caillard, A. Radja, P. Thissen, J.M. Gordon, Y.N. Gartstein, A.V. Malko, Y.J. Chabal, J. Phys. Chem. C 117, 20186 (2013)CrossRefGoogle Scholar
  45. 45.
    O.P.M. Gaudin, I.D.W. Samuel, S. Amriou, P.L. Burn, Appl. Phys. Lett. 96, 053305 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    H. DeVoe, J. Chem. Phys. 43, 3199 (1965)ADSCrossRefGoogle Scholar
  47. 47.
    D.A. Higgins, P.J. Reid, P.F. Barbara, J. Phys. Chem. 100, 1174 (1996)CrossRefGoogle Scholar
  48. 48.
    H.V. Berlepsch, K. Ludwig, C. Böttcher, Phys. Chem. Chem. Phys. 16, 10659 (2014)CrossRefGoogle Scholar
  49. 49.
    I. Pockrand, A. Brillante, D. Möbius, J. Chem. Phys. 77, 6289 (1982)ADSCrossRefGoogle Scholar
  50. 50.
    I. Pockrand, J.D. Swalen, J.G. Gordon, M.R. Philpott, J. Chem. Phys. 70, 3401 (1979)ADSCrossRefGoogle Scholar
  51. 51.
    O. Arteaga, Z. El-Hachemi, A. Canillas, Phys. Status Solidi A 205, 797 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    T. Shaykhutdinov, S.D. Pop, A. Furchner, K. Hinrichs, ACS Macro Lett. 6, 598 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Kirstein, S. Daehne, Int. J. Photoenergy 2006, 1 (2006)Google Scholar
  54. 54.
    P. Alliprandini Filho, G.G. Dalkiranis, R.A.S.Z. Armond, E.M. Therézio, I.H. Bechtold, A.A. Vieira, R. Cristiano, H. Gallardo, A. Marletta, O.N. Oliveira, Phys. Chem. Chem. Phys. 16, 2892 (2014)CrossRefGoogle Scholar
  55. 55.
    H. Yao, T. Isohashi, K. Kimura, J. Phys. Chem. B 111, 7176 (2007)CrossRefGoogle Scholar
  56. 56.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland: Sole distributors for the USA and Canada, Elsevier Science Pub. Co., Amsterdam; New York, 1987)CrossRefGoogle Scholar
  57. 57.
    J.R. Tischler, M.S. Bradley, V. Bulović, Opt. Lett. 31, 2045 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    M.S. Bradley, J.R. Tischler, V. Bulović, Adv. Mater. 17, 1881 (2005)CrossRefGoogle Scholar
  59. 59.
    P. Törmä, W.L. Barnes, Rep. Prog. Phys. 78, 013901 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier, Phys. Rev. Lett. 93, (2004)Google Scholar
  61. 61.
    R. Houdré, Phys. Status Solidi B 242, 2167 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    C. Bonnand, J. Bellessa, J.C. Plenet, Phys. Rev. B 73, (2006)Google Scholar
  63. 63.
    A. Salomon, S. Wang, J.A. Hutchison, C. Genet, T.W. Ebbesen, Chem. Phys. Chem. 14, 1882 (2013)CrossRefGoogle Scholar
  64. 64.
    M.M. Dvoynenko, J.-K. Wang, Opt. Lett. 38, 760 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    D. Melnikau, R. Esteban, D. Savateeva, A. Sánchez-Iglesias, M. Grzelczak, M.K. Schmidt, L.M. Liz-Marzán, J. Aizpurua, Y.P. Rakovich, J. Phys. Chem. Lett. 7, 354 (2016)CrossRefGoogle Scholar
  66. 66.
    P.A. Hobson, W.L. Barnes, D.G. Lidzey, G.A. Gehring, D.M. Whittaker, M.S. Skolnick, S. Walker, Appl. Phys. Lett. 81, 3519 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    A. Armitage, D. Lidzey, D.D. Bradley, T. Virgili, M. Skolnick, S. Walker, Synth. Met. 111–112, 377 (2000)CrossRefGoogle Scholar
  68. 68.
    D.G. Lidzey, D.M. Coles, in Org. Hybrid Photonic Crystal, ed. by D. Comoretto (Springer International Publishing, Cham, 2015), pp. 243–273Google Scholar
  69. 69.
    J. Wenus, S. Ceccarelli, D.G. Lidzey, A.I. Tolmachev, J.L. Slominskii, J.L. Bricks, Org. Electron. 8, 120 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering (MSE)University of Texas at DallasRichardsonUSA
  2. 2.Institute of Functional Interfaces (IFG), Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations