Polymer Blends and Composites

  • Stergios Logothetidis
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


The implementation of flexible Organic Electronic (OE) devices in a large variety of consumer applications (generation of electricity, visualization of information, lighting, sensing, etc.) will significantly improve our everyday life. The typical OE device (e.g. a organic photovoltaic cell—OPV) consists of multilayered structures (30–200 nm thick each) fabricated onto rigid (e.g. glass) and/or flexible substrates (as PET, PEN) from transparent and electrically active organic nanolayers. The OE device core is the active or the organic semiconducting (polymer or small molecules) layer, that absorbs photons and generates electric charges, sandwiched between the device electrodes. Finally, the device is encapsulated by barrier layers for the protection of the photoactive layers against degradation and corrosion due to atmospheric gas penetration inside the device. The understanding of the correlation between the polymer blend structure and its optical and electrical properties, and the achievement of the desirable morphology at nanometer scale, is a prerequisite in order to optimize the device performance and stability. Spectroscopic Ellipsometry (SE) from the infrared to the visible and far ultraviolet spectral region has been widely used to provide significant insights on the optical properties, blend morphology, and composition of the polymer blends that are used as active layers in OE devices. In this chapter, we summarize on the latest advances in the implementation of SE from the infrared to the visible and ultraviolet spectral region, for the investigation of the optical and electronic properties, composition profile and structure of polymer nanomaterials that are used as organic semiconductors and transparent electrodes for OE devices, and we discuss the effect of their nanoscale structure on their properties and functionality.



The authors would like to thank Dr. Despoina Georgiou, Dr. Christos Koidis, Dr. Panagiotis G. Karagiannidis and the other staff of the Lab for Thin Films, Nanosystems and Nanometrology (LTFN) for their contribution. Also, the authors would like to thank Clevios for the supply of the PEDOT:PSS formulations. This work was partially supported by the EC STREP Project OLAtronics, Grand Agreement No. 216211, and by the EC REGPOT Project ROleMak No. 286022.


  1. 1.
    D.M. de Leeuw, E. Cantatore, Mater. Sci. Semicond. Process. 11, 199 (2008)CrossRefGoogle Scholar
  2. 2.
    White Paper OE-A Roadmap (2011)Google Scholar
  3. 3.
    C.J. Brabec, Sol. Energy Mater. Sol. Cells 83, 273 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Kumar, S. Chand, Prog. Photovolt. Res. Appl. 20(4), 377 (2012)Google Scholar
  5. 5.
    S. Logothetidis, A. Laskarakis, Eur. Phys. J. Appl. Phys. 46, 12502 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    F.C. Krebs, Org. Electron. 10, 761 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Galagan, I.G. de Vries, A.P. Langen, R. Andriessen, W.J.H. Verhees, S.C. Veenstra, J.M. Kroon, Chem. Eng. Process. 50, 454 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Li, R. Zhu, Y. Yang, Nat. Photonics 6, 153 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. Logothetidis, A. Laskarakis, Thin Solid Films 518, 1245 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    G.E. Irene, H.G. Tompkins (eds.), Handbook of Ellipsometry (William Andrew, Norwich, 2005)Google Scholar
  12. 12.
    R.M.A. Azzam, N.M. Bashara (eds.), Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)Google Scholar
  13. 13.
    A. Laskarakis, S. Kassavetis, C. Gravalidis, S. Logothetidis, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 460 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S. Logothetidis, in Thin Films Handbook, ed. by H.S. Nalwa (Academic Press, San Diego, 2001)Google Scholar
  15. 15.
    X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 5, 579 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93, 3693 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    B.C. Thompson, J.M.J. Fréchet, Angew. Chem. Int. Ed. Engl. 47, 58 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Hiramoto, H. Fujiwara, M. Yokoyama, J. Appl. Phys. 72, 3781 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)CrossRefGoogle Scholar
  21. 21.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, Nat. Photonics 3, 649–653 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    W.-H. Baek, T.-S. Yoon, H.H. Lee, Y.-S. Kim, Org. Electron. 11, 933–937 (2010)CrossRefGoogle Scholar
  24. 24.
    M. Schubert, A. Kasic, T. Hofmann, V. Gottschalch, J. Off, F. Scholz, E. Schubert, H. Neumann, I. Hodgkinson, M. Arnold, W. Dollase, C.M. Herzinger, in Proceedings of the SPIE, vol. 4806 (2002), p. 264Google Scholar
  25. 25.
    K. Hinrichs, M. Gensch, N. Nikonenko, J. Pionteck, K.-J. Eichhorn, Macromol. Symp. 230, 26 (2005)CrossRefGoogle Scholar
  26. 26.
    G.E. Jellison, Thin Solid Films 313–314, 33 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    G.E. Jellison, Thin Solid Films 290–291, 40 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    F.C. Krebs, T. Tromholt, M. Jørgensen, Nanoscale 2, 873 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009)CrossRefGoogle Scholar
  30. 30.
    J.C. Hummelen, B.W. Knight, F. Lepeq, F. Wudl, J. Yao, C.L. Wilkins, J. Org. Chem. 60, 532 (1995)CrossRefGoogle Scholar
  31. 31.
    Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 22, E135 (2010)CrossRefGoogle Scholar
  32. 32.
    A. Loiudice, A. Rizzo, G. Latini, C. Nobile, M. de Giorgi, G. Gigli, Sol. Energy Mater. Sol. Cells 100, 147 (2012)CrossRefGoogle Scholar
  33. 33.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78, 841 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. Mcculloch, C. Ha, M. Ree, Nat. Mater. 5, 197 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    V.D. Mihailetchi, H. Xie, B. de Boer, L.M. Popescu, J.C. Hummelen, P.W.M. Blom, L.J.A. Koster, Appl. Phys. Lett. 89, 012107 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    H. Hoppe, N.S. Sariciftci, J. Mater. Chem. 16, 45 (2006)CrossRefGoogle Scholar
  38. 38.
    K. Kim, J. Liu, D.L. Carroll, Appl. Phys. Lett. 88, 181911 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Zhao, Z. Xie, Y. Qu, Y. Geng, L. Wang, Appl. Phys. Lett. 90, 043504 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    P.G. Karagiannidis, N. Kalfagiannis, D. Georgiou, A. Laskarakis, N.A. Hastas, C. Pitsalidis, S. Logothetidis, J. Mater. Chem. 22, 14624 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Logothetidis, D. Georgiou, Under Preparation (2013)Google Scholar
  43. 43.
    P.G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, S. Logothetidis, Mater. Chem. Phys. 129, 1207 (2011)CrossRefGoogle Scholar
  44. 44.
    D.S. Germack, C.K. Chan, R.J. Kline, D.A. Fischer, D.J. Gundlach, M.F. Toney, L.J. Richter, D.M. DeLongchamp, Macromolecules 43, 3828 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, Y. Yang, Adv. Funct. Mater. 19, 1227 (2009)CrossRefGoogle Scholar
  46. 46.
    T. Agostinelli, T.A.M. Ferenczi, E. Pires, S. Foster, A. Maurano, C. Müller, A. Ballantyne, M. Hampton, S. Lilliu, M. Campoy-Quiles, H. Azimi, M. Morana, D.D.C. Bradley, J. Durrant, J.E. MacDonald, N. Stingelin, J. Nelson, J. Polym. Sci. Part B Polym. Phys. 49, 717 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Lipatov, Prog. Polym. Sci. 27, 1721 (2002)CrossRefGoogle Scholar
  48. 48.
    C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Adv. Mater. 22, 3839 (2010)CrossRefGoogle Scholar
  49. 49.
    S. van Bavel, E. Sourty, G. de With, K. Frolic, J. Loos, Macromolecules 42, 7396 (2009)CrossRefGoogle Scholar
  50. 50.
    S.-Y. Chuang, C.-C. Yu, H.-L. Chen, W.-F. Su, C.-W. Chen, Sol. Energy Mater. Sol. Cells 95, 2141 (2011)CrossRefGoogle Scholar
  51. 51.
    S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, C.-W. Chen, J. Mater. Chem. 19, 5554 (2009)CrossRefGoogle Scholar
  52. 52.
    B. Xue, B. Vaughan, C.-H. Poh, K.B. Burke, L. Thomsen, A. Stapleton, X. Zhou, G.W. Bryant, W. Belcher, P.C. Dastoor, J. Phys. Chem. C 114, 15797 (2010)CrossRefGoogle Scholar
  53. 53.
    A. Orimo, K. Masuda, S. Honda, H. Benten, S. Ito, H. Ohkita, H. Tsuji, Appl. Phys. Lett. 96, 043305 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    X. Bulliard, S.-G. Ihn, S. Yun, Y. Kim, D. Choi, J.-Y. Choi, M. Kim, M. Sim, J.-H. Park, W. Choi, K. Cho, Adv. Funct. Mater. 20, 4381 (2010)CrossRefGoogle Scholar
  55. 55.
    J.Y. Oh, W.S. Jang, T. Il Lee, J.-M. Myoung, H.K. Baik, Appl. Phys. Lett. 98, 023303 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    N. Schmerl, G. Andersson, Phys. Chem. Chem. Phys. 13, 14993 (2011)CrossRefGoogle Scholar
  57. 57.
    C. Gravalidis, A. Laskarakis, S. Logothetidis, Eur. Phys. J. Appl. Phys. 46, 12505 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    I. Cruz-Cruz, M. Reyes-Reyes, M.A. Aguilar-Frutis, A.G. Rodriguez, R. López-Sandoval, Synth. Met. 160, 1501 (2010)CrossRefGoogle Scholar
  59. 59.
    B. Friedel, P.E. Keivanidis, T.J.K. Brenner, A. Abrusci, C.R. McNeill, R.H. Friend, N.C. Greenham, Macromolecules 42, 6741 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    A. Nardes, M. Kemerink, R. Janssen, Phys. Rev. B 76, 1 (2007)CrossRefGoogle Scholar
  61. 61.
    J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, Polymer 45, 8443 (2004)CrossRefGoogle Scholar
  62. 62.
    Z. Xiong, C. Liu, Org. Electron. 13, 1532 (2012)CrossRefGoogle Scholar
  63. 63.
    S.A. Mauger, A.J. Moulé, Org. Electron. 12, 1948 (2011)CrossRefGoogle Scholar
  64. 64.
    A.M. Nardes, R.A.J. Janssen, M. Kemerink, Adv. Funct. Mater. 18, 865 (2008)CrossRefGoogle Scholar
  65. 65.
    F. Herrmann, S. Engmann, M. Presselt, H. Hoppe, S. Shokhovets, G. Gobsch, Appl. Phys. Lett. 100, 153301 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    S. Jonsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W.D. van der Gon, W.R. Salaneck, M. Fahlman, Synth. Met. 139, 1 (2003)CrossRefGoogle Scholar
  67. 67.
    A.M. Nardes, M. Kemerink, R.A.J. Janssen, J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, A.J.J.M. van Breemen, M.M. de Kok, Adv. Mater. 19, 1196 (2007)CrossRefGoogle Scholar
  68. 68.
    M. Schubert, C. Bundesmann, G. Jakopic, H. Maresch, H. Arwin, F. Zhang, O. Inganas, Thin Solid Films 456, 295 (2004)CrossRefGoogle Scholar
  69. 69.
    T. Ino, T. Hiate, T. Fukuda, K. Ueno, H. Shirai, J. Non-Cryst. Solids 358, 2520 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    M. Garganourakis, S. Logothetidis, C. Pitsalidis, D. Georgiou, S. Kassavetis, A. Laskarakis, Thin Solid Films 517, 6409 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    S.A. Mauger, L. Chang, C.W. Rochester, A.J. Moulé, Org. Electron. 13, 2747 (2012)CrossRefGoogle Scholar
  72. 72.
    M.V. Madsen, K.O. Sylvester-hvid, B. Dastmalchi, K. Hingerl, K. Norrman, T. Tromholt, M. Manceau, D. Angmo, F.C. Krebs, J. Phys. Chem. C 115, 10817 (2011)CrossRefGoogle Scholar
  73. 73.
    S.-I. Na, S.-S. Kim, J. Jo, D.-Y. Kim, Adv. Mater. 20, 4061 (2008)CrossRefGoogle Scholar
  74. 74.
    S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, D.-Y. Kim, J. Mater. Chem. 19, 9045 (2009)CrossRefGoogle Scholar
  75. 75.
    C. Koidis, S. Logothetidis, C. Kapnopoulos, P.G. Karagiannidis, A. Laskarakis, N.A. Hastas, Mater. Sci. Eng. B 176, 1556 (2011)CrossRefGoogle Scholar
  76. 76.
    J. Humlicek, A. Nebojsa, J. Hora, M. Stransky, J. Spousta, T. Sikola, Thin Solid Films 332, 25 (1998)ADSCrossRefGoogle Scholar
  77. 77.
    Y. Chen, K.S. Kang, K.J. Han, K.H. Yoo, J. Kim, Synth. Met. 159, 1701 (2009)CrossRefGoogle Scholar
  78. 78.
    A. Laskarakis, P.G. Karagiannidis, D. Georgiou, D.M. Nikolaidou, S. Logothetidis, Thin Solid Films 541, 102 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lab for Thin Films-Nanosystems & Nanometrology (LTFN), Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations