Advertisement

Shock Focusing in Nature and Medicine

  • Nicholas Apazidis
  • Veronica Eliasson
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

We will here get acquainted with some spectacular examples of shock focusing occurring in nature, from a tiny bubble that emits light during its periodic compression and expansion to a supernova that rebounds after a gravitational collapse producing the most powerful energy burst known to us with light intensity comparable to that of the whole galaxy. Interestingly, some of the small sea creatures such as the so-called snapping shrimp, just some 20 mm in length, use cavitation to create a powerful outgoing blasts to hunt their pray. Despite the very small scale compared to astronomical events, the tiny bubble functions as a focusing lens and is able to generate extreme accelerations, forces, and temperatures during nano- and picosecond time intervals. Shock wave lithotripsy is one of the most known medical applications of shock wave focusing. The method, developed three decades ago, uses repeated focused pressure pulses and is now the primary method for treatment of kidney stones.

References

  1. 1.
    Adams, A.J.: Fly Fisherman’s Guide to Saltwater Prey. Stackpole Books, Mechanicsburg, PA (2008)Google Scholar
  2. 2.
    Anker, A., Hultgren, K.M., De Grave, S.: Oxford University Museum of Natural History “Synalpheus pinkfloydi sp. nov., a new pistol shrimp from the tropical eastern Pacific (Decapoda: Alpheidae)”. Zootaxa 4254(1), 111 (2017).  https://doi.org/10.11646/zootaxa.4254.1.7 CrossRefGoogle Scholar
  3. 3.
    Au, W.W.L., Banks, K., The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. J. Acoust. Soc. Am. 104, 41–47 (1998)CrossRefGoogle Scholar
  4. 4.
    Bailey, M.R., Cleveland, R.O., Colonius, T., Crum, L.A., Evan, A.P., Lingeman, J.E., McAteer, J.A., Sapozhnikov, O.A., Jr Williams, J.C.: Cavitation in shock wave lithotripsy: the critical role of bubble activity in stone breakage and kidney trauma. In: 2003 IEEE Symposium, vol. 1, pp. 724–727 (2003)Google Scholar
  5. 5.
    Barber, B.P., Putterman, S.J.: Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. Phys. Rev. Lett. 69(28), 3839–3842 (1992)CrossRefGoogle Scholar
  6. 6.
    Barber, B.P., Hiller, R.A., Löfstedt, R., Putterman, S.J., Weninger, K.R.: Defining the unknowns of sonoluminescense. Phys. Rep. 281, 65–143 (1997)CrossRefGoogle Scholar
  7. 7.
    Burrows, A.: Supernova explosions in the Universe. Nature 403, 727–733 (2000)CrossRefGoogle Scholar
  8. 8.
    Curhan, G.C.: Epidemiology of stone disease. Urol. Clin. North Am. 34, 287 (2007)CrossRefGoogle Scholar
  9. 9.
    Everest, F.A., Young, R.W., Johnson, M.W.: Acoustical characteristics of noise produced by snapping shrimp J. Acoust. Soc. Am. 20, 137 (1948)CrossRefGoogle Scholar
  10. 10.
    Ferguson, B.G., Cleary, J.L.: In situ source level and source position estimates of biological transient signals produced by snapping shrimp in an underwater environment. J. Acoust. Soc. Am. 109, 3031–3037 (2001)CrossRefGoogle Scholar
  11. 11.
    Flanningan, D.J., Suslick, K.S.: Inertially confined plasma in an imploding bubble. Nat. Phys. 6, 598–601 (2010)CrossRefGoogle Scholar
  12. 12.
    Frenzel, H., Schultes, H.: Luminescenz im ultraschallbeschicken Wasser. Z. Phys. Chem. B 27, 421–424 (1934)Google Scholar
  13. 13.
    Gaitan, D.F.: An experimental investigation of acoustic cavitation in gaseous liquids. Ph.D. thesis, University of Mississippi (1990)Google Scholar
  14. 14.
    Gaitan, D.F., Crum, L.A, Church, C.C., Roy, R.A.: Sonoluminescence and bubble dynamics for a single, stable cavitation bubble. J. Acoust. Soc. A. 91, 3166–3183 (1992)CrossRefGoogle Scholar
  15. 15.
    Gompf, B., Günther, R., Nick, G., Pecha, R., Eisenmenger, W.: Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Phys. Rev. Lett. 79, 1405-1-408 (1997)CrossRefGoogle Scholar
  16. 16.
    Herberholz, J., Schmitz, B.: Flow visualisation and high speed video analysis of water jets in the snapping shrimp (Alpheus heterochaelis). J. Comp. Physiol. A 185, 41–49 (1999)CrossRefGoogle Scholar
  17. 17.
    Hess, D., Brücker, C., Hegner, F., Balmert, A., Bleckmann, H.: Vortex formation with a snapping shrimp claw. PLoS ONE 8, e77120 (2013)CrossRefGoogle Scholar
  18. 18.
    Hilgenfeldt, S., Grossmann, S., Lohse, D.: Sonoluminescence light emission. Phys. Fluids 11, 1318–1330 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hiller, R.A., Putterman, S.J., Weninger, K.R.: Time-resolved spectra of sonoluminescence. Phys. Phys. Rev. Lett. 80, 1090–1093 (1998)CrossRefGoogle Scholar
  20. 20.
    Iosilevskii, G., Weihs, D.: Speed limits on swimming of fishes and cetaceans. J. R. Soc. Interface 5, 329–338 (2007)CrossRefGoogle Scholar
  21. 21.
    Khalid, S., Kappus, B., Weninger, K., Putterman, S.: Opacity and transport measurements reveal that dilute plasma models of sonoluminescence are not valid. Phys. Rev. Lett. 108, 104302-1-104302-4 (2012)Google Scholar
  22. 22.
    Kim, B., Choi, B.K.: Variation of underwater ambient noise observed at IORS station as a pilot study. Ocean Sci. J. 41(3), 175–179 (2006)CrossRefGoogle Scholar
  23. 23.
    Kim, H., Seo, J., Ahn, J., Chung, J.: Snapping shrimp noise mitigation based on statistical detection in underwater acoustic orthogonal frequency division multiplexing systems Jpn. J. Appl. Phys. 56, 07JG02 (2017)CrossRefGoogle Scholar
  24. 24.
    Lingeman, J.E., Kim, S.C., Kuo, R.L., McAteer, J.A., Evan, A.P.: Shockwave lithotripsy: anecdotes and insights. J. Endourol. 17(9), 687–693 (2003)CrossRefGoogle Scholar
  25. 25.
    Lingeman, J.E., McAteer, J.A., Gnessin, E., Evan, A.P.: Shock wave lithotripsy: advances in technology and technique. Nat. Rev. Urol. 6(12), 660–670 (2009)CrossRefGoogle Scholar
  26. 26.
    Ljunghall, S.: Incidence of upper urinary tract stones. Miner. Electrolyte Metab. 13, 220–227 (1987)Google Scholar
  27. 27.
    Löfstedt, R., Barber, B.P., Putterman, S.J.: Toward a hydrodynamic theory of sonoluminescence. Phys. Fluids 5, 2911–2928 (1993)CrossRefGoogle Scholar
  28. 28.
    Lohse, D., Schmitz, B., Versluis, M.: Snapping shrimp make flashing bubbles. Nature 413, 477–478 (2001)CrossRefGoogle Scholar
  29. 29.
    Lotan, Y., Pearle, M.S.: Economics of stone management. Urol. Clin. North Am. 34, 443 (2007)CrossRefGoogle Scholar
  30. 30.
    McCammon, A.M., Broks, W.R.: Protection of host anemones by snapping shrimps: a case for symbiotic mutualism? Symbiosis 63(2), 71–78 (2014)CrossRefGoogle Scholar
  31. 31.
    Neisius, A., Lipkin, M.E., Rassweiler, J.J., Zhong, P., Preminger, G.M., Knoll, T.: Shock wave lithotripsy: the new phoenix? World J. Urol. 33, 213–221 (2015)CrossRefGoogle Scholar
  32. 32.
    Noblin, X., Rojas, N.O., Westbrook, J., Llorens, C., Argentina M., Dumais, A.: The Fern Sporangium: a unique catapult. Science 335, 1322–1323 (2012)CrossRefGoogle Scholar
  33. 33.
    Noltigk, B.E., Neppiras, B.A.: Cavitation produced by ultrasonics. Proc. Phys. Soc. B 63, 674–683 (1950)CrossRefGoogle Scholar
  34. 34.
    Patek, S.N., Caldwell, R.L.: Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus J. Exp. Biol. 208, 3655–3664 (2005)CrossRefGoogle Scholar
  35. 35.
    Patek, S.N., Korff, W.L., Caldwell, R.L.: Deadly strike mechanism of a mantis shrimp Nature 428, 819–820 (2004)Google Scholar
  36. 36.
    Patek, S.N., Nowroozi, B.N., Baio, J.E., Caldwell, R.L., Summers, A.P.: Linkage mechanics and power amplification of the mantis shrimp’s strike. J. Exp. Biol. 210, 3677–3688 (2007)CrossRefGoogle Scholar
  37. 37.
    Pearle, M.S., Calhoun, E.A., Curhan, G.C.: Urologic diseases in America project: urolithiasis. J. Urol. 173, 848 (2005)CrossRefGoogle Scholar
  38. 38.
    Pishchalnikov, Y.A., McAteer, J.A., Williams Jr, J.C., Pishchalnikova, I.V., Vonderhaar, R.J.: Why stones break better at slow shockwave rates than at fast rates: In vitro study with a research electrohydraulic lithotripter. J. Endourol. 20(8), 537–541 (2006)CrossRefGoogle Scholar
  39. 39.
    Plesset, M.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)Google Scholar
  40. 40.
    Prosperetti, A., Crum, L.A., Commander, K.W.: Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83, 502–514 (1988)CrossRefGoogle Scholar
  41. 41.
    Putterman, S.: Sonoluminescence: the star in a jar. Phys. World 11, 38–42 (1998)CrossRefGoogle Scholar
  42. 42.
    Putterman, S.J., Weninger, K.R.: Bubbles turn sound into light. Annu. Rev. Fluid Mech. 32, 445–476 (2000)CrossRefGoogle Scholar
  43. 43.
    Racioppi, M., Palermo, G., D’Addessi, A., Pinto, F., Sacco, E., D’Agostino, D., Vittori, M., Bassi, P.F.: Hot topics in urological health economics. A mini review. Archivio Italiano di Urologia e Andrologia 84(2), 1–6 (2012)Google Scholar
  44. 44.
    Rayleigh, L.: On the pressure development in a liquid during a collapse of a spherical cavity. Philos. Mag. 34, 94–98 (1917)CrossRefGoogle Scholar
  45. 45.
    Rice, D.P., Hodgson, T.A., Kopstein, A.N.: The economic costs of illness: a replication and update. Health Care Financ. Rev. 7, 61–80 (1985)Google Scholar
  46. 46.
    Saigal, C.S., Joyce, G., Timilsina, A.R.: Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int. 68, 1808–1814 (2005)CrossRefGoogle Scholar
  47. 47.
    Sapozhnikov, O.A., Maxwell A.D., MacConaghy, B., Baileya, M.R.: A mechanistic analysis of stone fracture in lithotripsy. J. Acoust. Soc. Am. 121, 2 (2007)CrossRefGoogle Scholar
  48. 48.
    Schmitz, B., Herberholz, J.: Snapping behaviour in intraspecific agonistic encounters in the snapping shrimp (Alpheus heterochaelis). J. Biosci. 23(5), 623–632 (1998)CrossRefGoogle Scholar
  49. 49.
    Sperry, J.S., Saliendra, N.Z., Pockman, W.T., Cochard, H., Cruiziat, P., Davis, S.D., Ewers, F.W., Tyree, M.T.: New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell Environ. 19, 427–436 (1996)CrossRefGoogle Scholar
  50. 50.
    Takei, D., Drake, J.J., Yamaguchi, H., Slane, P., Uchiyama, Y., Katsuda, S.: X-ray fading and expansion in the “Miniature supernova remnant” of GK Persei. Astrophys. J. 801, 92 (2015)CrossRefGoogle Scholar
  51. 51.
    Tyree, M.T., Sperry, J.S.: Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40(1), 19–38 (1989)CrossRefGoogle Scholar
  52. 52.
    Vazquez, G, Camara, C., Putterman, S., Weninger, K.: Sonoluminescence: nature’s smallest blackbody. Opt. Lett. 26, 575–577 (2001)CrossRefGoogle Scholar
  53. 53.
    Versluis, M., Schmitz, B., von der Heydt, A., Lohse, D.: How snapping shrimp snap: through cavitating bubbles. Science 298, 2114–2117 (2000)CrossRefGoogle Scholar
  54. 54.
    Wu, C.C., Roberts, P.H.: A model of of sonoluminescence. Proc. R. Soc. A 445, 323 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicholas Apazidis
    • 1
  • Veronica Eliasson
    • 2
  1. 1.MechanicsKTH-Royal Institute of TechnologyStockholmSweden
  2. 2.University of California, San DiegoLa JollaUSA

Personalised recommendations