Liver Function

  • Lucija Virović-JukićEmail author
  • Mario Živković
Part of the Clinical Gastroenterology book series (CG)


The liver is designed to maintain the body’s chemical and metabolic homeostasis. It plays a major role in protein, carbohydrate, lipid, bile acid, and iron metabolism, and the body’s immune defense. About 90% of the body’s nutrients pass through the liver from the intestines. The liver is also responsible for the synthesis of many plasma proteins with different functions, and acts as a filter to remove harmful substances from the blood. Finally, it performs important endocrine functions. Knowledge of the relationship between structure and function of the liver under normal conditions is essential for understanding derangements observed in clinical diseases affecting the liver.


Liver Protein metabolism Fat metabolism Carbohydrate metabolism Bile acid metabolism Iron metabolism Detoxification 


  1. 1.
    Ger R. Surgical anatomy of the liver. Surg Clin North Am. 1989;69:179–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J Surg. 1982;6:3–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Skandalakis JE, Skandalakis LJ, Skandalakis PN, Mirilas P. Hepatic surgical anatomy. Surg Clin North Am. 2004;84:413–35.CrossRefPubMedGoogle Scholar
  4. 4.
    Jamieson GG. The anatomy of general surgical operations. 2nd ed. Edinburgh/New York: Churchill Livingstone/Elsevier; 2006. p. 8–23.Google Scholar
  5. 5.
    Kogure K, Ishizaki M, Nemoto M, Kuwano H, Yorifuji H, Ishikawa H, et al. Close relation between the inferior vena cava ligament and the caudate lobe in the human liver. J Hepato-Biliary-Pancreat Surg. 2007;14:297–301.CrossRefGoogle Scholar
  6. 6.
    Ludwig J, Ritman EL, LaRusso NF, Sheedy PF, Zump G. Anatomy of the human biliary system studied by quantitative computer aided three-dimensional imaging techniques. Hepatology. 1998;27:893–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Blumgart LH, Belghiti J. Surgery of the liver, biliary tract, and pancreas. 3rd ed. Philadelphia: Saunders Elsevier; 2007. p. 3–30.CrossRefGoogle Scholar
  8. 8.
    Sherlock S. Assessment of liver function. In: Sherlock S, editor. Disease of liver and biliary system. 10th ed. London: Blackwell Science Ltd; 1997. p. 17–32.Google Scholar
  9. 9.
    Wijekoon EP, Skinner C, Brosnan ME, Brosnan JT. Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes. Can J Physiol Pharmacol. 2004;82:506–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Malandro MS, Kilberg MS. Molecular biology of amino acid transporters. Annu Rev Biochem. 1996;65:305–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Kadowaki M, Kanazawa T. Amino acids as regulators of proteolysis. J Nutr. 2003;133(6 Suppl 1):20525–65.Google Scholar
  12. 12.
    Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol. 2006;574:41–53.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stinkens R, Goossens G, Jocken J, Blaak E. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev. 2015;16:715–57.CrossRefPubMedGoogle Scholar
  14. 14.
    Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275:19906–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Aisen P, Leibman A, Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem. 1978;253:1930–7.PubMedGoogle Scholar
  16. 16.
    Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta. 2009;1790:682–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50:2340–57.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7:678–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Kamisako T, Kobayashi Y, Takeuchi K, Ishihara T, Higuchi K, Tanaka Y, Gabazza EC, Adachi Y. Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol. 2000;35:659–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Chiang YIL. Bile acid metabolism and signaling. Compr Physiol. 2013;3:1191–212.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Maddrey W. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Gastroenterology. 2000;118:984–5.CrossRefGoogle Scholar
  22. 22.
    Notas G, Kisseleva T, Brenner D. NK and NKT cells in liver injury and fibrosis. Clin Immunol. 2009;130:16–26.CrossRefPubMedGoogle Scholar
  23. 23.
    Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43:S54–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Zakhari S. Overview: How is alcohol metabolized by the body? Alcohol Res Health. 2006;30:709–19.Google Scholar
  25. 25.
    Lieber CS. Metabolism of alcohol. Clin Liver Dis. 2005;9:1–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Navarro VJ, Senior JR. Drug-related hepatotoxicity. N Engl J Med. 2006;354:731–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Zieve L. Pathogenesis of hepatic encephalopathy. Metab Brain Dis. 1987;2:147–65.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Gastroenterology and HepatologySestre milosrdnice University Hospital CenterZagrebCroatia
  2. 2.University of Zagreb School of MedicineZagrebCroatia

Personalised recommendations