Anorectal Function

  • Marinko MarušićEmail author
  • Rosana Troskot Perić
  • Antonio Klemenčić
Part of the Clinical Gastroenterology book series (CG)


The integrated performance of colon, rectum with anal canal, pelvic floor muscles, and neural pathways play an essential role in the normal function of the lower gastrointestinal system. Diabetes mellitus can lead to the impairment of the entire gastrointestinal system, including colon and anorectum as its terminal parts. Diabetes-related impairment of this region of the gastrointestinal tract can cause disturbances which can markedly reduce the quality of life of the affected patients. To objectify the influence of diabetes on this region, there are a number of methods that aim to assess the function of the colon and anorectal function. However, understanding the diabetes-driven changes in the lower part of the gastrointestinal system is a challenge due to the diverse underlying mechanisms that control the gut homeostasis, and considering that in-vivo investigation in humans is not really feasible. Nevertheless, there is a growing amount of knowledge with regard to the effect of diabetes on functions of both colon and anorectum. This chapter provides an overview of functional anatomy, physiology, and the assessment of colonic and anorectal function, as well as the effect of diabetes on the terminal part of the gastrointestinal system.


Diabetes mellitus Colon Anorectal function Assessment of colonic and anorectal function Enteric nervous system Interstitial cells of Cajal 



Advanced glycation end products


Colonic transit time


External anal sphincter




Enteric nervous system


Reduced glutathione


Internal anal sphincter


Interstitial cells of Cajal


Non-adrenergic non-cholinergic pathway


Nitric oxide

NO synthase

Nitric oxide synthase

PNTML test

Pudendal nerve terminal motor latency test


Rectoanal contractile reflex


Rectoanal inhibitory reflex


Radiopaque markers


Sensorimotor response


  1. 1.
    Cohn SM, Birnbaum EH, Friel CM. Colon: anatomy and structural anomalies. In: Yamada T, editor. Textbook of gastroenterology. 5th ed. Singapore: Wiley-Blackwell; 2009. p. 1369–85.Google Scholar
  2. 2.
    Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes. 2017;8(6):249–69. PMID: 28694926.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bajwa A, Emmanuel A. The physiology of continence and evacuation. Best Pract Res Clin Gastroenterol. 2009;23(4):477–85. PMID: 19647684.CrossRefPubMedGoogle Scholar
  4. 4.
    Horváth VJ, Putz Z, Izbéki F, Körei AE, Gerő L, Lengyel C, et al. Diabetes-related dysfunction of the small intestine and the colon: focus on motility. Curr Diab Rep. 2015;15(11):94. PMID: 26374571.CrossRefPubMedGoogle Scholar
  5. 5.
    Yu SW, Rao SS. Anorectal physiology and pathophysiology in the elderly. Clin Geriatr Med. 2014;30(1):95–106. PMID: 24267605.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Joshi H, Jones O. Clinical, radiological and physiological assessment of anorectal function. Surgery (Oxford). 2014;32(8):404–7. Scholar
  7. 7.
    Van Koughnett JA, da Silva G. Anorectal physiology and testing. Gastroenterol Clin N Am. 2013;42(4):713–28. PMID: 24280396.CrossRefGoogle Scholar
  8. 8.
    Furness JB, Nguyen TV, Nurgali K, Shimizu Y. The enteric nervous system and its extrinsic connections. In: Yamada T, editor. Textbook of gastroenterology. 5th ed. Singapore: Wiley-Blackwell; 2009. p. 15–39.Google Scholar
  9. 9.
    Rocca Rossetti S. Functional anatomy of pelvic floor. Arch Ital Urol Androl. 2016;88(1):28–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Uranga-Ocio JA, Bastús-Díez S, Delkáder-Palacios D, García-Cristóbal N, Leal-García MÁ, Abalo-Delgado R. Enteric neuropathy associated to diabetes mellitus. Rev Esp Enferm Dig. 2015;107(6):366–73. PMID: 26031865.PubMedGoogle Scholar
  11. 11.
    Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26(5):611–24. PMID: 24661628.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cho HM. Anorectal physiology: test and clinical application. J Korean Soc Coloproctol. 2010;26(5):311–5. PMID: 21152132.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scott SM, Gladman MA. Manometric, sensorimotor, and neurophysiologic evaluation of anorectal function. Gastroenterol Clin N Am. 2008;37(3):511–38. PMID: 18793994.CrossRefGoogle Scholar
  14. 14.
    Remes-Troche JM, De-Ocampo S, Valestin J, Rao SS. Rectoanal reflexes and sensorimotor response in rectal hyposensitivity. Dis Colon Rectum. 2010;53(7):1047–54. PMID: 20551758.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gudsoorkar VS, Quigley EM. Colorectal sensation and motility. Curr Opin Gastroenterol. 2014;30(1):75–83. PMID: 24257038.CrossRefPubMedGoogle Scholar
  16. 16.
    Maurer AH. Gastrointestinal motility, part 2: small-bowel and colon transit. J Nucl Med. 2015;56(9):1395–400. PMID: 26940448.PubMedGoogle Scholar
  17. 17.
    Szarka LA, Camilleri M. Methods for the assessment of small-bowel and colonic transit. Semin Nucl Med. 2012;42(2):113–23. PMID: 22293166.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Farmer AD, Scott SM, Hobson AR. Gastrointestinal motility revisited: the wireless motility capsule. United European Gastroenterol J. 2013;1(6):413–21. PMID: 24917991.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Camilleri M, Thorne NK, Ringel Y, Hasler WL, Kuo B, Esfandyari T, et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipation. Neurogastroenterol Motil. 2010;22(8):874–82.e233. PMID: 20465593.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Werth B, Meyer-Wyss B, Spinas GA, Drewe J, Beglinger C. Non-invasive assessment of gastrointestinal motility disorders in diabetic patients with and without cardiovascular signs of autonomic neuropathy. Gut. 1992;33(9):1199–203. PMID: 1427371.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Azpiroz F, Malagelada C. Diabetic neuropathy in the gut: pathogenesis and diagnosis. Diabetologia. 2016;59(3):404–8. PMID: 26643877.CrossRefPubMedGoogle Scholar
  22. 22.
    Scott SM. Manometric techniques for the evaluation of colonic motor activity: current status. Neurogastroenterol Motil. 2003;15(5):483–513. PMID: 14507350.CrossRefPubMedGoogle Scholar
  23. 23.
    Krishnan B, Babu S, Walker J, Walker AB, Pappachan JM. Gastrointestinal complications of diabetes mellitus. World J Diabetes. 2013;4(3):51–63. PMID: 23772273.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gregersen H, Liao D, Drewes AM, Drewes AM, Zhao J. Ravages of diabetes on gastrointestinal sensory-motor function: implications for pathophysiology and treatment. Curr Gastroenterol Rep. 2016;18(2):6. PMID: 26768896.CrossRefPubMedGoogle Scholar
  25. 25.
    Jung HK, Kim DY, Moon IH, Hong YS. Colonic transit time in diabetic patients—comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44(2):265–72. PMID: 12728467.CrossRefPubMedGoogle Scholar
  26. 26.
    Bian RW, Lou QL, Gu LB, Kong AP, So WY, Ko GT, et al. Delayed gastric emptying is related to cardiovascular autonomic neuropathy in Chinese patients with type 2 diabetes. Acta Gastroenterol Belg. 2011;74(1):28–33. PMID: 21563651.PubMedGoogle Scholar
  27. 27.
    Søfteland E, Brock C, Frøkjær JB, Brøgger J, Madácsy L, Gilja OH, et al. Association between visceral, cardiac and sensorimotor polyneuropathies in diabetes mellitus. J Diabetes Complicat. 2014;28(3):370–7. PMID: 24355661.CrossRefPubMedGoogle Scholar
  28. 28.
    Søfteland E, Brock C, Frøkjær JB, Simrén M, Drewes AM, Dimcevski G. Rectal sensitivity in diabetes patients with symptoms of gastroparesis. J Diabetes Res. 2014;2014:784841. PMID: 25136644.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Furlan MM, Molinari SL, Miranda Neto MH. Morphoquantitative effects of acute diabetes on the myenteric neurons of the proximal colon of adult rats. Arq Neuropsiquiatr. 2002;60(3-A):576–81. PMID: 12244395.CrossRefPubMedGoogle Scholar
  30. 30.
    Du F, Wang L, Qian W, Liu S. Loss of enteric neurons accompanied by decreased expression of GDNF and PI3K/Akt pathway in diabetic rats. Neurogastroenterol Motil. 2009;21(11):1229–e114. PMID: 19709371.CrossRefPubMedGoogle Scholar
  31. 31.
    Chandrasekharan B, Anitha M, Blatt R, Shahnavaz N, Kooby D, Staley C, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23(2):131–8.e26. PMID: 20939847.CrossRefPubMedGoogle Scholar
  32. 32.
    Rivera LR, Poole DP, Thacker M, Furness JB. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil. 2011;23(11):980–8. PMID: 21895878.CrossRefPubMedGoogle Scholar
  33. 33.
    Kashyap P, Farrugia G. Oxidative stress: key player in gastrointestinal complications of diabetes. Neurogastroenterol Motil. 2011;23(2):111–4. PMID: 21226884.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu W, Yue W, Wu R. Effects of diabetes on expression of glial fibrillary acidic protein and neurotrophins in rat colon. Auton Neurosci. 2010;154(1–2):79–83. PMID: 20042376.CrossRefPubMedGoogle Scholar
  35. 35.
    Ordög T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil. 2008;20(1):8–18. PMID: 18173559.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang XY, Sanders KM, Ward SM. Relationship between interstitial cells of Cajal and enteric motor neurons in the murine proximal colon. Cell Tissue Res. 2000;302(3):331–42. PMID: 11151445.CrossRefPubMedGoogle Scholar
  37. 37.
    Nakahara M, Isozaki K, Hirota S, Vanderwinden JM, Takakura R, Kinoshita K, et al. Deficiency of KIT-positive cells in the colon of patients with diabetes mellitus. J Gastroenterol Hepatol. 2002;17(6):666–70. PMID: 12100611.CrossRefPubMedGoogle Scholar
  38. 38.
    Tang X, Duan LP, Wei YY, Yang XS, Zhong YF. Insulin protects the loss of colonic interstitial cells of Cajal and acetylcholine in patients with type 2 diabetes mellitus. Zhonghua Nei Ke Za Zhi. 2010;49(3):234–8. PMID: 20450658.PubMedGoogle Scholar
  39. 39.
    Albertí E, Mikkelsen HB, Wang XY, Díaz M, Larsen JO, Huizinga JD, et al. Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1499–510. PMID: 17322067.CrossRefPubMedGoogle Scholar
  40. 40.
    Yamamoto T, Watabe K, Nakahara M, Ogiyama H, Kiyohara T, Tsutsui S, et al. Disturbed gastrointestinal motility and decreased interstitial cells of Cajal in diabetic db/db mice. J Gastroenterol Hepatol. 2008;23(4):660–7. PMID: 18341539.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim SJ, Park JH, Song DK, Park KS, Lee JE, Kim ES, et al. Alterations of colonic contractility in long-term diabetic rat model. J Neurogastroenterol Motil. 2011;17(4):372–80. PMID: 22148106.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Forrest A, Huizinga JD, Wang XY, Liu LW, Parsons M. Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G315–26. PMID: 18006604. Epub 2007 Nov 15.CrossRefPubMedGoogle Scholar
  43. 43.
    Takahashi A, Tomomasa T, Kaneko H, Hatori R, Ishige T, Suzuki M, et al. In vivo recording of colonic motility in conscious rats with deficiency of interstitial cells of Cajal, with special reference to the effects of nitric oxide on colonic motility. J Gastroenterol. 2005;40(11):1043–8. PMID: 16322948.CrossRefPubMedGoogle Scholar
  44. 44.
    Siegman MJ, Eto M, Butler TM. Remodeling of the rat distal colon in diabetes: function and ultrastructure. Am J Physiol Cell Physiol. 2016;310(2):C151–60. PMID: 26561639.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao J, Nakaguchi T, Gregersen H. Biomechanical and histomorphometric colon remodelling in STZ-induced diabetic rats. Dig Dis Sci. 2009;54(8):1636–42. PMID: 18989775.CrossRefPubMedGoogle Scholar
  46. 46.
    González N, Prieto I, Del Puerto-Nevado L, Portal-Nuñez S, Ardura JA, Corton M, DiabetesCancerConnect Consortium, et al. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget. 2017;8(11):18456–85. PMID: 28060743.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607. PMID: 25555821.CrossRefPubMedGoogle Scholar
  48. 48.
    Deng L, Gui Z, Zhao L, Wang J, Shen L. Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Dig Dis Sci. 2012;57(6):1576–85. PMID: 22350783.CrossRefPubMedGoogle Scholar
  49. 49.
    Othman EM, Hintzsche H, Stopper H. Signaling steps in the induction of genomic damage by insulin in colon and kidney cells. Free Radic Biol Med. 2014;68:247–57. PMID: 24355212.CrossRefPubMedGoogle Scholar
  50. 50.
    Othman EM, Leyh A, Stopper H. Insulin mediated DNA damage in mammalian colon cells and human lymphocytes in vitro. Mutat Res. 2013;745-746:34–9. PMID: 23524287.CrossRefPubMedGoogle Scholar
  51. 51.
    Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology. 2004;127(4):1044–50. PMID: 15480982.CrossRefPubMedGoogle Scholar
  52. 52.
    Nie Z, Zhu H, Gu M. Reduced colorectal cancer incidence in type 2 diabetic patients treated with metformin: a meta-analysis. Pharm Biol. 2016;54(11):2636–42. PMID: 27159666.CrossRefPubMedGoogle Scholar
  53. 53.
    Jorge JX, Matos HC, Machado JP, Almeida CC. Transit of radiopaque particles through the gastrointestinal tract: comparison between type 2 diabetes patients and healthy individuals. Rev Esp Enferm Dig. 2012;104(3):118–21. PMID: 22449152.CrossRefPubMedGoogle Scholar
  54. 54.
    Iida M, Ikeda M, Kishimoto M, Tsujino T, Kaneto H, Matsuhisa M, Kajimoto Y, Watarai T, Yamasaki Y, Hori M. Evaluation of gut motility in type II diabetes by the radiopaque marker method. J Gastroenterol Hepatol. 2000;15(4):381–5. PMID: 10824881.CrossRefPubMedGoogle Scholar
  55. 55.
    Kawagishi T, Nishizawa Y, Okuno Y, Sekiya K, Morii H. Segmental gut transit in diabetes mellitus: effect of cisapride. Diabetes Res Clin Pract. 1992;17(2):137–44. PMID: 1425148.CrossRefPubMedGoogle Scholar
  56. 56.
    Ron Y, Leibovitz A, Monastirski N, Habot B, Segal R. Colonic transit time in diabetic and nondiabetic long-term care patients. Gerontology. 2002;48(4):250–3. PMID: 12053116.CrossRefPubMedGoogle Scholar
  57. 57.
    Maleki D, Camilleri M, Zinsmeister AR, Rizza RA. Effect of acute hyperglycemia on colorectal motor and sensory function in humans. Am J Phys. 1997;273(4 Pt 1):G859–64. PMID: 9357828.Google Scholar
  58. 58.
    Sims MA, Hasler WL, Chey WD, Kim MS, Owyang C. Hyperglycemia inhibits mechanoreceptor-mediated gastrocolonic responses and colonicperistaltic reflexes in healthy humans. Gastroenterology. 1995;108(2):350–9. PMID: 7835576.CrossRefPubMedGoogle Scholar
  59. 59.
    Tieppo J, Kretzmann Filho NA, Seleme M, Fillmann HS, Berghmans B, Possa Marroni N. Anal pressure in experimental diabetes. Int J Color Dis. 2009;24(12):1395–9. PMID: 19547989.CrossRefGoogle Scholar
  60. 60.
    Sun WM, Katsinelos P, Horowitz M, Read NW. Disturbances in anorectal function in patients with diabetes mellitus and faecal incontinence. Eur J Gastroenterol Hepatol. 1996;8(10):1007–12. PMID: 8930568.CrossRefPubMedGoogle Scholar
  61. 61.
    Beyak MJ, Bulmer DC, Sellers D, Grundy D. Impairment of rectal afferent mechanosensitivity in experimental diabetes in the rat. Neurogastroenterol Motil. 2009;21(6):678–81. PMID: 19239626.CrossRefPubMedGoogle Scholar
  62. 62.
    Dong L, Liang X, Sun B, Ding X, Han H, Zhang G, et al. Impairments of the primary afferent nerves in a rat model of diabetic visceral hyposensitivity. Mol Pain. 2015;11:74. PMID: 26652274.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Caruana BJ, Wald A, Hinds JP, Eidelman BH. Anorectal sensory and motor function in neurogenic fecal incontinence. Comparison between multiple sclerosis and diabetes mellitus. Gastroenterology. 1991;100(2):465–70. PMID: 1985043.CrossRefPubMedGoogle Scholar
  64. 64.
    Cozzolino D, Salvatore T, Giugliano D, Paolisso G, Landolfi V, Del Genio A, et al. Sensorimotor evaluation of ano-rectal complex in diabetes mellitus. Diabete Metab. 1991;17(6):520–4. PMID: 1809597.PubMedGoogle Scholar
  65. 65.
    Pinna Pintor M, Zara GP, Falletto E, Monge L, Demattei M, Carta Q, et al. Pudendal neuropathy in diabetic patients with faecal incontinence. Int J Color Dis. 1994;9(2):105–9. PMID: 8064189.CrossRefGoogle Scholar
  66. 66.
    Epanomeritakis E, Koutsoumbi P, Tsiaoussis I, Ganotakis E, Vlata M, Vassilakis JS, et al. Impairment of anorectal function in diabetes mellitus parallels duration of disease. Dis Colon Rectum. 1999;42(11):1394–400. PMID: 10566526.CrossRefPubMedGoogle Scholar
  67. 67.
    Aitchison M, Fisher BM, Carter K, McKee R, MacCuish AC, Finlay IG. Impaired anal sensation and early diabetic faecal incontinence. Diabet Med. 1991;8(10):960–3. PMID: 1838049.CrossRefPubMedGoogle Scholar
  68. 68.
    Lejeune D, Melange M, Daumerie C, Buysschaert M, Vanheuverzwijn R. Comparative value of anorectal manometry and electrocardiography in the diagnosis of diabeticautonomic neuropathy. Gastroenterol Clin Biol. 1986;10(8–9):554–7. PMID: 3781160.PubMedGoogle Scholar
  69. 69.
    Hounsom L, Tomlinson DR. Does neuropathy develop in animal models? Clin Neurosci. 1997;4(6):380–9. PMID: 9358984.PubMedGoogle Scholar
  70. 70.
    Fillmann HS, Llessuy S, Marroni CA, Fillmann LS, Marroni NP. Diabetes mellitus and anal sphincter pressures: an experimental model in rats. Dis Colon Rectum. 2007;50(4):517–22. PMID: 17285232.CrossRefPubMedGoogle Scholar
  71. 71.
    Rattan S, Chakder S. Role of nitric oxide as a mediator of internal anal sphincter relaxation. Am J Phys. 1992;262(1 Pt 1):G107–12. PMID: 1733256.Google Scholar
  72. 72.
    Schiller LR, Santa Ana CA, Schmulen AC, Hendler RS, Harford WV, Fordtran JS. Pathogenesis of fecal incontinence in diabetes mellitus: evidence for internal-anal-sphincter dysfunction. N Engl J Med. 1982;307(27):1666–71. PMID: 7144865.CrossRefPubMedGoogle Scholar
  73. 73.
    Tomita R, Tanjoh K, Fujisaki S, Fukuzawa M. The role of nitric oxide (NO) in the human internal anal sphincter. J Gastroenterol. 2001;36(6):386–91. PMID: 11428584.CrossRefPubMedGoogle Scholar
  74. 74.
    Terauchi A, Kobayashi D, Mashimo H. Distinct roles of nitric oxide synthases and interstitial cells of Cajal in rectoanal relaxation. Am J Physiol Gastrointest Liver Physiol. 2005;289(2):G291–9. PMID: 15845873.CrossRefPubMedGoogle Scholar
  75. 75.
    de Lorijn F, de Jonge WJ, Wedel T, Vanderwinden JM, Benninga MA, Boeckxstaens GE. Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut. 2005;54(8):1107–13. PMID: 16009682.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Chey WD, Kim M, Hasler WL, Owyang C. Hyperglycemia alters perception of rectal distention and blunts the rectoanal inhibitory reflex in healthy volunteers. Gastroenterology. 1995;108(6):1700–8. PMID: 7768374.CrossRefPubMedGoogle Scholar
  77. 77.
    Avşar E, Ersöz O, Karişik E, Erdoğan Y, Bekiroğlu N, Lawrance R, et al. Hyperglycemia-induced attenuation of rectal perception depends upon pattern of rectal balloon inflation. Dig Dis Sci. 1997;42(11):2206–12. PMID: 9398796.CrossRefPubMedGoogle Scholar
  78. 78.
    Russo A, Sun WM, Sattawatthamrong Y, Fraser R, Horowitz M, Andrews JM, et al. Acute hyperglycaemia affects anorectal motor and sensory function in normal subjects. Gut. 1997;41(4):494–9. PMID: 9391248.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Russo A, Botten R, Kong MF, Chapman IM, Fraser RJ, Horowitz M, et al. Effects of acute hyperglycaemia on anorectal motor and sensory function in diabetes mellitus. Diabet Med. 2004;21(2):176–82. PMID: 14984454.CrossRefPubMedGoogle Scholar
  80. 80.
    Hernando-Harder AC, Singer MV, Harder H. Effect of duodenal glucose and acute hyperglycemia on rectal perception and compliance in response to tension-controlled rectal distension in healthy humans. Dig Dis Sci. 2008;53(6):1624–31. PMID: 17932756.CrossRefPubMedGoogle Scholar
  81. 81.
    Sun WM, Read NW, Prior A, Daly JA, Cheah SK, Grundy D. Sensory and motor responses to rectal distention vary according to rate and pattern of balloon inflation. Gastroenterology. 1990;99(4):1008–15. PMID: 2394323.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marinko Marušić
    • 1
    • 2
    • 3
    Email author
  • Rosana Troskot Perić
    • 1
    • 2
    • 3
  • Antonio Klemenčić
    • 4
  1. 1.Department of Hepatology and GastroenterologyUniversity Hospital Sveti DuhZagrebCroatia
  2. 2.Medical SchoolJ.J. Strossmayer University of OsijekOsijekCroatia
  3. 3.Faculty of Health StudiesUniversity of RijekaRijekaCroatia
  4. 4.Educational Institute for Emergency Medicine of the City of ZagrebZagrebCroatia

Personalised recommendations