Skip to main content

Eigenfunctions of One-Homogeneous Functionals

  • Chapter
  • First Online:
Nonlinear Eigenproblems in Image Processing and Computer Vision

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1306 Accesses

Abstract

The motivation and interpretation of classical linear filtering strategies are closely linked to eigendecomposition of positive semidefinite linear operators (derivatives of quadratic functionals). In the following chapters, we show that one can define a nonlinear spectral decomposition framework based on eigenfunctions of convex one-homogeneous functionals and obtain a remarkable number of analogies to linear filtering techniques. In this chapter, we give an introduction of previous studies on the topic and give preliminary settings and properties of one-homogeneous functionals. We then explain in more detail the derivation of eigenfunctions of total variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Appell, E. De Pascale, A. Vignoli, Nonlinear Spectral Theory, vol. 10 (Walter de Gruyter, 2004)

    Google Scholar 

  2. L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Google Scholar 

  3. Y. Meyer, Oscillating patterns in image processing and in some nonlinear evolution equations, March 2001. The 15th Dean Jacquelines B. Lewis Memorial Lectures

    Google Scholar 

  4. F. Andreu, C. Ballester, V. Caselles, J.M. Mazón, Minimizing total variation flow. Differ. Integral Equ. 14(3), 321–360 (2001)

    Google Scholar 

  5. F. Andreu, V. Caselles, J.I. Dıaz, J.M. Mazón, Some qualitative properties for the total variation flow. J. Funct. Anal. 188(2), 516–547 (2002)

    Google Scholar 

  6. G. Bellettini, V. Caselles, M. Novaga, The total variation flow in \(R^N\). J. Differ. Equ. 184(2), 475–525 (2002)

    Google Scholar 

  7. G. Steidl, J. Weickert, T. Brox, P. Mrzek, M. Welk, On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM J. Numer. Anal. 42(2), 686–713 (2004)

    Google Scholar 

  8. M. Burger, K. Frick, S. Osher, O. Scherzer, Inverse total variation flow. Multiscale Model. Simul. 6(2), 366–395 (2007)

    Google Scholar 

  9. S. Bartels, R.H. Nochetto, J. Abner, A.J. Salgado, Discrete Total Variation Flows Without Regularization (2012), arXiv:1212.1137

  10. Y. Giga, R.V. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations. Hokkaido Univ. Preprint Ser. Math. (963) (2010)

    Google Scholar 

  11. M. Burger, G. Gilboa, S. Osher, J. Xu, Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006)

    Google Scholar 

  12. J. Müller, Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in pet, 2013. Ph.D. Thesis, Univ. Münster

    Google Scholar 

  13. M. Benning, C. Brune, M. Burger, J. Müller, Higher-order tv methods: enhancement via bregman iteration. J. Sci. Comput. 54, 269–310 (2013)

    Google Scholar 

  14. C. Pöschl, O. Scherzer, Exact Solutions of One-dimensional TGV (2013), arXiv:1309.7152, 2013

  15. K. Papafitsoros, K. Bredies, A Study of the One Dimensional Total Generalised Variation Regularisation Problem (2013), arXiv:1309.5900

  16. K. Bredies, K. Kunisch, T. Pock, Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010)

    Google Scholar 

  17. A. Chambolle, P.L. Lions, Image recovery via total variation minimization and related problems. Numerische Mathematik 76(3), 167–188 (1997)

    Google Scholar 

  18. J. Duran, M. Moeller, C. Sbert, D. Cremers, Collaborative Total Variation: A General Framework for Vectorial TV Models. Submitted, arXiv:1508.01308

  19. M. Welk, G. Steidl, J. Weickert, Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. Appl. Comput. Harmon. Anal. 24(2), 195–224 (2008)

    Google Scholar 

  20. M. Benning, M. Burger, Ground states and singular vectors of convex variational regularization methods. Methods Appl. Anal. 20(4), 295–334 (2013)

    Google Scholar 

  21. L. Dorst, R. Van den Boomgaard, Morphological signal processing and the slope transform. Signal Process. 38(1), 79–98 (1994)

    Google Scholar 

  22. U. Köthe, Local appropriate scale in morphological scale-space, in ECCV’96 (Springer, Berlin, 1996), pp. 219–228

    Google Scholar 

  23. M. Burger, G. Gilboa, M. Moeller, L. Eckardt, D. Cremers, Spectral decompositions using one-homogeneous functionals. SIAM J. Imag. Sci. 9(3), 1374–1408 (2016)

    Google Scholar 

  24. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Google Scholar 

  25. D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration, in 2011 International Conference on Computer Vision (IEEE, 2011), pp. 479–486

    Google Scholar 

  26. H.J. Landau, On szegö’s eingenvalue distribution theorem and non-hermitian kernels. Journal d’Analyse Mathématique 28(1), 335–357 (1975)

    Google Scholar 

  27. J.M. Varah, On the separation of two matrices. SIAM J. Numer. Anal. 16(2), 216–222 (1979)

    Google Scholar 

  28. F. Chatelin, The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators. SIAM Rev. 23(4), 495–522 (1981)

    Google Scholar 

  29. L.N. Trefethen, Approximation theory and numerical linear algebra, in Algorithms for Approximation II (Springer, Berlin, 1990), pp. 336–360

    Google Scholar 

  30. N. Lloyd, Trefethen. Pseudospectra of matrices. Numer. Anal. 91, 234–266 (1991)

    Google Scholar 

  31. L.N. Trefethen, M. Embree, Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators (Princeton University Press, Princeton, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Gilboa .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilboa, G. (2018). Eigenfunctions of One-Homogeneous Functionals. In: Nonlinear Eigenproblems in Image Processing and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-75847-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75847-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75846-6

  • Online ISBN: 978-3-319-75847-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics