Skip to main content

Established and Emerging Roles of the DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs)

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Anti-Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a large polypeptide of over 4000 amino acids with serine/threonine protein kinase activity that is enhanced in the presence of double stranded DNA and the Ku70/80 heterodimer. The discovery of this DNA activated protein kinase activity led to investigation of its role in DNA double-strand break repair and DNA-PKcs was shown to play important roles in repair of ionizing radiation-induced DNA double strand breaks and V(D)J recombination through the non-homologous end joining (NHEJ) pathway. However, recently, additional roles for DNA-PKcs in mitosis, transcription and cell migration have been suggested. Here, we review the structure, established and emerging roles of DNA-PKcs and its potential as a target for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariumi Y, Masutani M, Copeland TD, Mimori T, Sugimura T, Shimotohno K, Ueda K, Hatanaka M, Noda M (1999) Suppression of the poly(ADP-ribose) polymerase activity by DNA-dependent protein kinase in vitro. Oncogene 18:4616–4625

    Article  PubMed  CAS  Google Scholar 

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Gottlieb TM, Kouzarides T, Jackson SP (1993) c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. Nucleic Acids Res 21:1289–1295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartlett EJ, Lees Miller SP. unpublished observations

    Google Scholar 

  • Berglund FM, Clarke PR (2009) hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks. Biochem Biophys Res Commun 381:59–64

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman A, Du L, Felgentreff K, Rosner C, Pankaj Kamdar R, Kokaraki G, Matsumoto Y, Davies EG, van der Burg M, Notarangelo LD et al (2015) DNA-PKcs Is involved in Ig class switch recombination in human B cells. J Immunol 195(12):5608–5615

    Article  PubMed  CAS  Google Scholar 

  • Block WD, Lees-Miller SP (2005) Putative homologues of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and other components of the non-homologous end joining machinery in Dictyostelium discoideum. DNA Repair 4:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Block WD, Yu Y, Lees-Miller SP (2004) Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res 32:997–1005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Block WD, Yu Y, Merkle D, Gifford JL, Ding Q, Meek K, Lees-Miller SP (2004) Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends. Nucleic Acids Res 32:4351–4357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227

    Article  PubMed  CAS  Google Scholar 

  • Boucher D, Hillier S, Newsome D, Wang Y, Takemoto D, Gu Y, Markland W, Hoover R, Arimoto R, Maxwell J et al (2016) Preclinical characterization of the selective DNA-dependent protein kinase (DNA-PK) inhibitor VX-984 in combination with chemotherapy. Ann Oncol 27:382P

    Article  Google Scholar 

  • Britton S, Froment C, Frit P, Monsarrat B, Salles B, Calsou P (2009) Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers. Cell Cycle 8:3717–3722

    Article  PubMed  CAS  Google Scholar 

  • Brush GS, Anderson CW, Kelly TJ (1994) The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Proc Natl Acad Sci U S A 91:12520–12524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bunch H, Lawney BP, Lin YF, Asaithamby A, Murshid A, Wang YE, Chen BP, Calderwood SK (2015) Transcriptional elongation requires DNA break-induced signalling. Nat Commun 6:10191

    Article  PubMed  CAS  Google Scholar 

  • Buschman MD, Rahajeng J, Field SJ (2015) GOLPH3 links the Golgi, DNA damage, and cancer. Cancer Res 75:624–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calderwood SK (2016) A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription 7:75–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  PubMed  CAS  Google Scholar 

  • Cano C, Harnor SJ (2017) Targeting DNA-PK for cancer therapy. ChemMedChem 12(12):895–900

    Article  PubMed  CAS  Google Scholar 

  • Carter TH, Kopman CR, James CB (1988) DNA-stimulated protein phosphorylation in HeLa whole cell and nuclear extracts. Biochem Biophys Res Commun 157:535–540

    Article  PubMed  CAS  Google Scholar 

  • Carter T, Vancurova I, Sun I, Lou W, DeLeon S (1990) A DNA-activated protein kinase from HeLa cell nuclei. Mol Cell Biol 10:6460–6471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, Chen DJ (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16:2333–2338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan DW, Mody CH, Ting NS, Lees-Miller SP (1996) Purification and characterization of the double-stranded DNA-activated protein kinase, DNA-PK, from human placenta. Biochem Cell Biol 74:67–73

    Article  PubMed  CAS  Google Scholar 

  • Chan DW, Ye R, Veillette CJ, Lees-Miller SP (1999) DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 38:1819–1828

    Article  PubMed  CAS  Google Scholar 

  • Checkley S, MacCallum L, Yates J, Jasper P, Luo H, Tolsma J, Bendtsen C (2015) Bridging the gap between in vitro and in vivo: dose and schedule predictions for the ATR inhibitor AZD6738. Sci Rep 5:13545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen BP, Chan DW, Kobayashi J, Burma S, Asaithamby A, Morotomi-Yano K, Botvinick E, Qin J, Chen DJ (2005) Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J Biol Chem 280:14709–14715

    Article  PubMed  CAS  Google Scholar 

  • Chen YR, Lees-Miller SP, Tegtmeyer P, Anderson CW (1991) The human DNA-activated protein kinase phosphorylates simian virus 40 T antigen at amino- and carboxy-terminal sites. J Virol 65:5131–5140

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chibazakura T, Watanabe F, Kitajima S, Tsukada K, Yasukochi Y, Teraoka H (1997) Phosphorylation of human general transcription factors TATA-binding protein and transcription factor IIB by DNA-dependent protein kinase--synergistic stimulation of RNA polymerase II basal transcription in vitro. Eur J Biochem 247:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Chiu CY, Cary RB, Chen DJ, Peterson SR, Stewart PL (1998) Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J Mol Biol 284:1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Chu G (1997) Double strand break repair. J Biol Chem 272:24097–24100

    Article  PubMed  CAS  Google Scholar 

  • Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Yu Y, Gupta S, Cho YM, Lees-Miller SP, Meek K (2005) Autophosphorylation of DNA-dependent protein kinase regulates DNA end processing and may also alter double-strand break repair pathway choice. Mol Cell Biol 25:10842–10852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidson D, Amrein L, Panasci L, Aloyz R (2013) Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond. Front Pharmacol 4:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeFazio LG, Stansel RM, Griffith JD, Chu G (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 21:3192–3200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Q, Reddy YV, Wang W, Woods T, Douglas P, Ramsden DA, Lees-Miller SP, Meek K (2003) Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23:5836–5848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobbs TA, Tainer JA, Lees-Miller SP (2010) A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation. DNA Repair 9:1307–1314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doksani Y, de Lange T (2014) The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol 6:a016576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dore AS, Drake AC, Brewerton SC, Blundell TL (2004) Identification of DNA-PK in the arthropods. Evidence for the ancient ancestry of vertebrate non-homologous end-joining. DNA Repair 3:33–41

    Article  PubMed  CAS  Google Scholar 

  • Douglas P, Cui X, Block WD, Yu Y, Gupta S, Ding Q, Ye R, Morrice N, Lees-Miller SP, Meek K (2007) The DNA-dependent protein kinase catalytic subunit is phosphorylated in vivo on threonine 3950, a highly conserved amino acid in the protein kinase domain. Mol Cell Biol 27:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Douglas P, Gupta S, Morrice N, Meek K, Lees-Miller SP (2005) DNA-PK-dependent phosphorylation of Ku70/80 is not required for non-homologous end joining. DNA Repair 4:1006–1018

    Article  PubMed  CAS  Google Scholar 

  • Douglas P, Sapkota GP, Morrice N, Yu Y, Goodarzi AA, Merkle D, Meek K, Alessi DR, Lees-Miller SP (2002) Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochem J 368:243–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas P, Ye R, Morrice N, Britton S, Trinkle-Mulcahy L, Lees-Miller SP (2015) Phosphorylation of SAF-A/hnRNP-U serine 59 by polo-like kinase 1 is required for mitosis. Mol Cell Biol 35:2699–2713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas P, Ye R, Trinkle-Mulcahy L, Neal JA, De Wever V, Morrice NA, Meek K, Lees-Miller SP (2014) Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis. Biosci Rep 34:e00113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas P, Zhong J, Ye R, Moorhead GB, Xu X, Lees-Miller SP (2010) Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol Cell Biol 30:1368–1381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dvir A, Peterson SR, Knuth MW, Lu H, Dynan WS (1992) Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc Natl Acad Sci U S A 89:11920–11924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dvir A, Stein LY, Calore BL, Dynan WS (1993) Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem 268:10440–10447

    PubMed  CAS  Google Scholar 

  • Edwards SR, Wandless TJ (2007) The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J Biol Chem 282:13395–13401

    Article  PubMed  CAS  Google Scholar 

  • Erdemir T, Bilican B, Cagatay T, Goding CR, Yavuzer U (2002) Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination. Mol Microbiol 46:947–957

    Article  PubMed  CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  PubMed  CAS  Google Scholar 

  • Farber-Katz SE, Dippold HC, Buschman MD, Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM et al (2014) DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 156:413–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feuerhahn S, Chen LY, Luke B, Porro A (2015) No DDRama at chromosome ends: TRF2 takes centre stage. Trends Biochem Sci 40:275–285

    Article  PubMed  CAS  Google Scholar 

  • Gauthier LR, Granotier C, Hoffschir F, Etienne O, Ayouaz A, Desmaze C, Mailliet P, Biard DS, Boussin FD (2012) Rad51 and DNA-PKcs are involved in the generation of specific telomere aberrations induced by the quadruplex ligand 360A that impair mitotic cell progression and lead to cell death. Cell Mol Life Sci 69:629–640

    Article  PubMed  CAS  Google Scholar 

  • Gell D, Jackson SP (1999) Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res 27:3494–3502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gil del Alcazar CR, Hardebeck MC, Mukherjee B, Tomimatsu N, Gao X, Yan J, Xie XJ, Bachoo R, Li L, Habib AA et al (2014) Inhibition of DNA double-strand break repair by the dual PI3K/mTOR inhibitor NVP-BEZ235 as a strategy for radiosensitization of glioblastoma. Clin Cancer Res 20:1235–1248

    Article  PubMed  CAS  Google Scholar 

  • Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF, Chong WY, Hummersone M, Rigoreau L, Menear KA et al (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 8:2894–2902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodarzi AA, Yu Y, Riballo E, Douglas P, Walker SA, Ye R, Harer C, Marchetti C, Morrice N, Jeggo PA et al (2006) DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J 25:3880–3889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodwin JF, Knudsen KE (2014) Beyond DNA repair: DNA-PK function in cancer. Cancer Discov 4:1126–1139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodwin JF, Kothari V, Drake JM, Zhao S, Dylgjeri E, Dean JL, Schiewer MJ, McNair C, Jones JK, Aytes A et al (2015) DNA-PKcs-mediated transcriptional regulation drives prostate cancer progression and metastasis. Cancer Cell 28:97–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72:131–142

    Article  PubMed  CAS  Google Scholar 

  • Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N (2010) PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci U S A 107:2467–2472

    Article  PubMed  PubMed Central  Google Scholar 

  • Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999) The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96:99–110

    Article  PubMed  CAS  Google Scholar 

  • Hammarsten O, DeFazio LG, Chu G (2000) Activation of DNA-dependent protein kinase by single-stranded DNA ends. J Biol Chem 275:1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM, Rambo RP, Hura GL, Pelikan M, So S et al (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285:1414–1423

    Article  PubMed  CAS  Google Scholar 

  • Harnor SJ, Brennan A, Cano C (2017) Targeting DNA-dependent protein kinase for cancer therapy. ChemMedChem 12:895–900

    Article  PubMed  CAS  Google Scholar 

  • Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849–856

    Article  PubMed  CAS  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159

    Article  PubMed  CAS  Google Scholar 

  • Hsu DW, Gaudet P, Hudson JJ, Pears CJ, Lakin ND (2006) DNA damage signaling and repair in dictyostelium discoideum. Cell Cycle 5:702–708

    Article  PubMed  CAS  Google Scholar 

  • Hsu HL, Yannone SM, Chen DJ (2002) Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair 1:225–235

    Article  PubMed  CAS  Google Scholar 

  • Hsu FM, Zhang S, Chen BP (2012) Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res 1:22–34

    PubMed  Google Scholar 

  • Huang B, Shang ZF, Li B, Wang Y, Liu XD, Zhang SM, Guan H, Rang WQ, Hu JA, Zhou PK (2014) DNA-PKcs associates with PLK1 and is involved in proper chromosome segregation and cytokinesis. J Cell Biochem 115:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Hudson JJ, Hsu DW, Guo K, Zhukovskaya N, Liu PH, Williams JG, Pears CJ, Lakin ND (2005) DNA-PKcs-dependent signaling of DNA damage in Dictyostelium discoideum. Curr Biol 15:1880–1885

    Article  PubMed  CAS  Google Scholar 

  • Hunter T (1995) When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ihmaid S, Ahmed HEA, Al-Sheikh Ali A, Sherif YE, Tarazi HM, Riyadh SM, Zayed MF, Abulkhair HS, Rateb HS (2017) Rational design, synthesis, pharmacophore modeling, and docking studies for identification of novel potent DNA-PK inhibitors. Bioorg Chem 72:234–247

    Article  PubMed  CAS  Google Scholar 

  • Iijima S, Teraoka H, Date T, Tsukada K (1992) DNA-activated protein kinase in Raji Burkitt's lymphoma cells. Phosphorylation of c-Myc oncoprotein. Eur J Biochem 206:595–603

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R (1990) GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 63:155–165

    Article  PubMed  CAS  Google Scholar 

  • Jette N, Lees-Miller SP (2015) The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol 117:194–205

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Crowe JL, Liu X, Nakajima S, Wang Y, Li C, Lee BJ, Dubois RL, Liu C, Yu X et al (2015) Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining. Mol Cell 58:172–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312:1798–1802

    Article  PubMed  CAS  Google Scholar 

  • Karmakar P, Piotrowski J, Brosh RM Jr, Sommers JA, Lees-Miller SP, Cheng WH, Snowden CM, Ramsden DA, Werner BVA (2002) protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 277:18291–18302

    Article  PubMed  CAS  Google Scholar 

  • Kharbanda S, Pandey P, Jin S, Inoue S, Bharti A, Yuan ZM, Weichselbaum R, Weaver D, Kufe D (1997) Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature 386:732–735

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM (1995) DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Kotula E, Berthault N, Agrario C, Lienafa MC, Simon A, Dingli F, Loew D, Sibut V, Saule S, Dutreix M (2015) DNA-PKcs plays role in cancer metastasis through regulation of secreted proteins involved in migration and invasion. Cell Cycle 14:1961–1972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotula E, Faigle W, Berthault N, Dingli F, Loew D, Sun JS, Dutreix M, Quanz M (2013) DNA-PK target identification reveals novel links between DNA repair signaling and cytoskeletal regulation. PLoS One 8:e80313

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn A, Gottlieb TM, Jackson SP, Grummt I (1995) DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev 9:193–203

    Article  PubMed  CAS  Google Scholar 

  • Labhart P (1995) DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc Natl Acad Sci U S A 92:2934–2938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavin MF, Khanna KK, Beamish H, Spring K, Watters D, Shiloh Y (1995) Relationship of the ataxia-telangiectasia protein ATM to phosphoinositide 3-kinase. Trends Biochem Sci 20:382–383

    Article  PubMed  CAS  Google Scholar 

  • Le PN, Maranon DG, Altina NH, Battaglia CL, Bailey SM (2013) TERRA, hnRNP A1, and DNA-PKcs interactions at human telomeres. Front Oncol 3:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Leahy JJ, Golding BT, Griffin RJ, Hardcastle IR, Richardson C, Rigoreau L, Smith GC (2004) Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorg Med Chem Lett 14:6083–6087

    Article  PubMed  CAS  Google Scholar 

  • Leber R, Wise TW, Mizuta R, Meek K (1998) The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem 273:1794–1801

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Lin YF, Chou HY, Yajima H, Fattah KR, Lee SC, Chen BP (2011) Involvement of DNA-dependent protein kinase in normal cell cycle progression through mitosis. J Biol Chem 286:12796–12802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KJ, Shang ZF, Lin YF, Sun J, Morotomi-Yano K, Saha D, Chen BP (2015) The catalytic subunit of DNA-dependent protein kinase coordinates with polo-like kinase 1 to facilitate mitotic entry. Neoplasia 17:329–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lees-Miller SP, Anderson CW (1989a) Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. J Biol Chem 264:2431–2437

    PubMed  CAS  Google Scholar 

  • Lees-Miller SP, Anderson CW (1989b) The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90 alpha at two NH2-terminal threonine residues. J Biol Chem 264:17275–17280

    PubMed  CAS  Google Scholar 

  • Lees-Miller SP, Anderson CW (1991) The DNA-activated protein kinase, DNA-PK: a potential coordinator of nuclear events. Cancer Cells 3:341–346

    PubMed  CAS  Google Scholar 

  • Lees-Miller SP, Chen YR, Anderson CW (1990) Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 10:6472–6481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lees-Miller SP, Godbout R, Chan DW, Weinfeld M, Day RS 3rd, Barron GM, Allalunis-Turner J (1995) Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267:1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12:5041–5049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lempiainen H, Halazonetis TD (2009) Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J 28:3067–3073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leuther KK, Hammarsten O, Kornberg RD, Chu G (1999) Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J 18:1114–1123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Comai L (2002) Displacement of DNA-PKcs from DNA ends by the Werner syndrome protein. Nucleic Acids Res 30:3653–3661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma CC, Li H, Wan RZ, Liu ZP (2014) Developments of DNA-dependent protein kinase inhibitors as anticancer agents. 2014 Oct 13. [Epub ahead of print]. PMID:25307307

    Google Scholar 

  • Ma Y, Lu H, Schwarz K, Lieber MR (2005) Repair of double-strand DNA breaks by the human nonhomologous DNA end joining pathway: the iterative processing model. Cell Cycle 4:1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Pannicke U, Lu H, Niewolik D, Schwarz K, Lieber MR (2005) The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis. J Biol Chem 280:33839–33846

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794

    Article  PubMed  CAS  Google Scholar 

  • Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417:639–650

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  • Mathieu AL, Verronese E, Rice GI, Fouyssac F, Bertrand Y, Picard C, Chansel M, Walter JE, Notarangelo LD, Butte MJ et al (2015) PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator-dependent autoimmunity. J Allergy Clin Immunol 135:1578–88.e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayo LD, Turchi JJ, Berberich SJ (1997) Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 57:5013–5016

    PubMed  CAS  Google Scholar 

  • Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Adv Immunol 99:33–58

    Article  PubMed  CAS  Google Scholar 

  • Meek K, Douglas P, Cui X, Ding Q, Lees-Miller SP (2007) trans Autophosphorylation at DNA-dependent protein kinase's two major autophosphorylation site clusters facilitates end processing but not end joining. Mol Cell Biol 27:3881–3890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mi J, Dziegielewski J, Bolesta E, Brautigan DL, Larner JM (2009) Activation of DNA-PK by ionizing radiation is mediated by protein phosphatase 6. PLoS One 4:e4395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michaelidis TM, Grummt I (2002) Mechanism of inhibition of RNA polymerase I transcription by DNA-dependent protein kinase. Biol Chem 383:1683–1690

    Article  PubMed  CAS  Google Scholar 

  • Morrison R, Al-Rawi JM, Jennings IG, Thompson PE, Angove MJ (2016) Synthesis, structure elucidation, DNA-PK and PI3K and anti-cancer activity of 8- and 6-aryl-substituted-1-3-benzoxazines. Eur J Med Chem 110:326–339

    Article  PubMed  CAS  Google Scholar 

  • Mortensen DS, Perrin-Ninkovic SM, Shevlin G, Elsner J, Zhao J, Whitefield B, Tehrani L, Sapienza J, Riggs JR, Parnes JS et al (2015) Optimization of a series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors and the discovery of CC-115. J Med Chem 58:5599–5608

    Article  PubMed  CAS  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan I, Sanal O, Bertrand Y, Philippe N et al (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186

    Article  PubMed  CAS  Google Scholar 

  • Munck JM, Batey MA, Zhao Y, Jenkins H, Richardson CJ, Cano C, Tavecchio M, Barbeau J, Bardos J, Cornell L et al (2012) Chemosensitization of cancer cells by KU-0060648, a dual inhibitor of DNA-PK and PI-3K. Mol Cancer Ther 11:1789–1798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neal JA, Dang V, Douglas P, Wold MS, Lees-Miller SP, Meek K (2011) Inhibition of homologous recombination by DNA-dependent protein kinase requires kinase activity, is titratable, and is modulated by autophosphorylation. Mol Cell Biol 31:1719–1733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neal JA, Meek K (2011) Choosing the right path: does DNA-PK help make the decision? Mutat Res 711:73–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neal JA, Sugiman-Marangos S, VanderVere-Carozza P, Wagner M, Turchi J, Lees-Miller SP, Junop MS, Meek K (2014) Unraveling the complexities of DNA-dependent protein kinase autophosphorylation. Mol Cell Biol 34:2162–2175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oakley GG, Patrick SM, Yao J, Carty MP, Turchi JJ, Dixon K (2003) RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry 42:3255–3264

    Article  PubMed  CAS  Google Scholar 

  • O'Neill T, Dwyer AJ, Ziv Y, Chan DW, Lees-Miller SP, Abraham RH, Lai JH, Hill D, Shiloh Y, Cantley LC et al (2000) Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem 275:22719–22727

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J (2003) DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 31:6819–6827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry J, Kleckner N (2003) The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112:151–155

    Article  PubMed  CAS  Google Scholar 

  • Peterson SR, Jesch SA, Chamberlin TN, Dvir A, Rabindran SK, Wu C, Dynan WS (1995) Stimulation of the DNA-dependent protein kinase by RNA polymerase II transcriptional activator proteins. J Biol Chem 270:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Pospisilova M, Seifrtova M, Rezacova M (2017) Small molecule inhibitors of DNA-PK for tumor sensitization to anticancer therapy. J Physiol Pharmacol 68:337–344

    PubMed  CAS  Google Scholar 

  • Radhakrishnan SK, Lees-Miller SP (2017) DNA requirements for interaction of the C-terminal region of Ku80 with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). DNA Repair 57:17–28

    Article  PubMed  CAS  Google Scholar 

  • Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JM, Pollard JR (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7:428–430

    Article  PubMed  CAS  Google Scholar 

  • Romick-Rosendale LE, Hoskins EE, Privette Vinnedge LM, Foglesong GD, Brusadelli MG, Potter SS, Komurov K, Brugmann SA, Lambert P, Kimple RJ et al (2015) Defects in the Fanconi anemia pathway in head and neck cancer cells stimulate tumor cell invasion through DNA-PK and Rac1 signaling. Clin Cancer Res 22(8):2062–2073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roth DB, Menetski JP, Nakajima PB, Bosma MJ, Gellert M (1992) V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70:983–991

    Article  PubMed  CAS  Google Scholar 

  • Ruis BL, Fattah KR, Hendrickson EA (2008) The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol Cell Biol 28:6182–6195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Schild-Poulter C, Shih A, Yarymowich NC, Hache RJ (2003) Down-regulation of histone H2B by DNA-dependent protein kinase in response to DNA damage through modulation of octamer transcription factor 1. Cancer Res 63:7197–7205

    PubMed  CAS  Google Scholar 

  • Shang ZF, Tan W, Liu XD, Yu L, Li B, Li M, Song M, Wang Y, Xiao BB, Zhong CG et al (2015) DNA-PKcs negatively regulates cyclin B1 protein stability through facilitating its ubiquitination mediated by Cdh1-APC/C pathway. Int J Biol Sci 11:1026–1035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shang Z, Yu L, Lin YF, Matsunaga S, Shen CY, Chen BP (2014) DNA-PKcs activates the Chk2-Brca1 pathway during mitosis to ensure chromosomal stability. Oncogene 3:e85

    Article  CAS  Google Scholar 

  • Sharif H, Li Y, Dong Y, Dong L, Wang WL, Mao Y, Wu H (2017) Cryo-EM structure of the DNA-PK holoenzyme. Proc Natl Acad Sci U S A 114:7367–7372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Lobrich M et al (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30:1079–1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  PubMed  CAS  Google Scholar 

  • Sibanda BL, Chirgadze DY, Ascher DB, Blundell TL (2017) DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 355:520–524

    Article  PubMed  CAS  Google Scholar 

  • Sibanda BL, Chirgadze DY, Blundell TL (2010) Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463:118–121

    Article  PubMed  CAS  Google Scholar 

  • Sipley JD, Menninger JC, Hartley KO, Ward DC, Jackson SP, Anderson CW (1995) Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8. Proc Natl Acad Sci U S A 92:7515–7519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soubeyrand S, Pope L, Pakuts B, Hache RJ (2003) Threonines 2638/2647 in DNA-PK are essential for cellular resistance to ionizing radiation. Cancer Res 63:1198–1201

    PubMed  CAS  Google Scholar 

  • Soubeyrand S, Torrance H, Giffin W, Gong W, Schild-Poulter C, Hache RJ (2001) Activation and autoregulation of DNA-PK from structured single-stranded DNA and coding end hairpins. Proc Natl Acad Sci U S A 98:9605–9610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH (2012) Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 40:4168–4177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sui J, Lin YF, Xu K, Lee KJ, Wang D, Chen BP (2015) DNA-PKcs phosphorylates hnRNP-A1 to facilitate the RPA-to-POT1 switch and telomere capping after replication. Nucleic Acids Res 43:5971–5983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suwa A, Hirakata M, Takeda Y, Jesch SA, Mimori T, Hardin JA (1994) DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc Natl Acad Sci U S A 91:6904–6908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI, Priestley A, Jackson SP, Marshak Rothstein A, Jeggo PA et al (1998) Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9:355–366

    Article  PubMed  CAS  Google Scholar 

  • Tavecchio M, Munck JM, Cano C, Newell DR, Curtin NJ (2012) Further characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, reveals potential cross-talk with homologous recombination. Cancer Chemother Pharmacol 69:155–164

    Article  PubMed  CAS  Google Scholar 

  • Ting NS, Kao PN, Chan DW, Lintott LG, Lees-Miller SP (1998) DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45. J Biol Chem 273:2136–2145

    Article  PubMed  CAS  Google Scholar 

  • Ting NS, Pohorelic B, Yu Y, Lees-Miller SP, Beattie TL (2009) The human telomerase RNA component, hTR, activates the DNA-dependent protein kinase to phosphorylate heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res 37:6105–6115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ting NS, Yu Y, Pohorelic B, Lees-Miller SP, Beattie TL (2005) Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res 33:2090–2098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu WZ, Li B, Huang B, Wang Y, Liu XD, Guan H, Zhang SM, Tang Y, Rang WQ, Zhou PK (2013) gammaH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett 587:3437–3443

    Article  PubMed  CAS  Google Scholar 

  • Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BP, Chen DJ (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177:219–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Burg M, van Dongen JJ, van Gent DC (2009) DNA-PKcs deficiency in human: long predicted, finally found. Curr Opin Allergy Clin Immunol 9:503–509

    Article  PubMed  CAS  Google Scholar 

  • Villarreal SA, Stewart PL (2014) CryoEM and image sorting for flexible protein/DNA complexes. J Struct Biol 187:76–83

    Article  PubMed  CAS  Google Scholar 

  • Walker AI, Hunt T, Jackson RJ, Anderson CW, Double-stranded DNA (1985) induces the phosphorylation of several proteins including the 90 000 mol. wt. heat-shock protein in animal cell extracts. EMBO J 4:139–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Lees-Miller SP (2013) Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. Int J Radiat Oncol Biol Phys 86:440–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weterings E, Verkaik NS, Keijzers G, Florea BI, Wang SY, Ortega LG, Uematsu N, Chen DJ, van Gent DC (2009) The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends. Mol Cell Biol 29:1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Williams ES, Klingler R, Ponnaiya B, Hardt T, Schrock E, Lees-Miller SP, Meek K, Ullrich RL, Bailey SM (2009) Telomere dysfunction and DNA-PKcs deficiency: characterization and consequence. Cancer Res 69:2100–2107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams DR, Lee KJ, Shi J, Chen DJ, Stewart PL (2008) Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals alpha helices and insight into DNA binding. Structure 16:468–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong RH, Chang I, Hudak CS, Hyun S, Kwan HY, Sul HS (2009) A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136:1056–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong RH, Sul HS (2010) Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol 10:684–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woodbine L, Neal JA, Sasi NK, Shimada M, Deem K, Coleman H, Dobyns WB, Ogi T, Meek K, Davies EG et al (2013) PRKDC mutations in a SCID patient with profound neurological abnormalities. J Clin Invest 123:2969–2980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woods DS, Sears CR, Turchi JJ (2015) Recognition of DNA termini by the C-Terminal region of the Ku80 and the DNA-dependent protein kinase catalytic subunit. PLoS One 10:e0127321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yajima H, Lee KJ, Chen BP (2006) ATR-dependent phosphorylation of DNA-dependent protein kinase catalytic subunit in response to UV-induced replication stress. Mol Cell Biol 26:7520–7528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yajima H, Lee KJ, Zhang S, Kobayashi J, Chen BP (2009) DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Mol Biol 385:800–810

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J, Chen DJ (2001) Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem 276:38242–38248

    PubMed  CAS  Google Scholar 

  • Yin X, Liu M, Tian Y, Wang J, Xu Y (2017) Cryo-EM structure of human DNA-PK holoenzyme. Cell Res 27(11):1341–1350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu Y, Mahaney BL, Yano K, Ye R, Fang S, Douglas P, Chen DJ, Lees-Miller SP (2008) DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks. DNA Repair 7:1680–1692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Y, Wang W, Ding Q, Ye R, Chen D, Merkle D, Schriemer D, Meek K, Lees-Miller SP (2003) DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination. DNA Repair 2:1239–1252

    Article  PubMed  CAS  Google Scholar 

  • Zeng K, Bastos RN, Barr FA, Gruneberg U (2010) Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol 191:1315–1332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Schlott B, Gorlach M, Grosse F (2004) DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic Acids Res 32:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Yajima H, Huynh H, Zheng J, Callen E, Chen HT, Wong N, Bunting S, Lin YF, Li M et al (2011) Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair. J Cell Biol 193:295–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ, Calvert AH, Newell DR, Smith GC, Curtin NJ (2006) Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66:5354–5362

    Article  PubMed  CAS  Google Scholar 

  • Zolner AE, Abdou I, Ye R, Mani RS, Fanta M, Yu Y, Douglas P, Tahbaz N, Fang S, Dobbs T et al (2011) Phosphorylation of polynucleotide kinase/ phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage. Nucleic Acids Res 39:9224–9237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors laboratory is supported by the Canadian Institute of Health Research, the Cancer Research Society and the Engineered Air Chair in Cancer Research. EB was supported by a University of Calgary Eyes High Post-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan P. Lees-Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartlett, E.J., Lees-Miller, S.P. (2018). Established and Emerging Roles of the DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs). In: Pollard, J., Curtin, N. (eds) Targeting the DNA Damage Response for Anti-Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-75836-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75836-7_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-75834-3

  • Online ISBN: 978-3-319-75836-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics