Skip to main content

Aryl–Aryl Covalent Coupling on Rutile TiO2 Surfaces

  • Conference paper
  • First Online:
On-Surface Synthesis II

Abstract

In recent years, enormous progress has been made in developing bottom-up strategies based on the polymerization of specially designed building blocks directly on a supporting surface. So far, selected noble metals have been mostly used as substrates for such on-surface chemical reactions. For the sake of practical applications the semiconductor surfaces clearly represent much more attractive platforms. Especially transition metal oxides exhibiting advantageous optical as well as photo- and electrochemical properties seem to be particularly interesting. In this chapter we describe the strategies for thermally triggered on-surface covalent coupling of aryl halides performed directly on rutile titanium dioxide surfaces. We focus our work on important parameters that need to be considered for understanding and optimization of the polymerization reactions on this model transition metal oxide system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grill, L., et al.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007)

    Article  CAS  Google Scholar 

  2. Bieri, M., et al.: Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 45, 6919–6921 (2009)

    Article  Google Scholar 

  3. Lipton-Duffin, J.A., et al.: Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5(5), 592–597 (2009)

    Article  CAS  Google Scholar 

  4. Perepichka, D.F., Rosei, F.: Extending polymer conjugation into the second dimension. Science 323(5911), 216–217 (2009)

    Article  CAS  Google Scholar 

  5. Lafferentz, L., et al.: Conductance of a single conjugated polymer as a continuous function of its length. Science 323(5918), 1193–1197 (2009)

    Article  CAS  Google Scholar 

  6. Cai, J., et al.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

    Article  CAS  Google Scholar 

  7. Lafferentz, L., et al.: Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012)

    Article  CAS  Google Scholar 

  8. Gourdon, A.: On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008)

    Article  CAS  Google Scholar 

  9. Franc, G., Gourdon, A.: Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments. Phys. Chem. Chem. Phys. 13, 14283–14292 (2011)

    Article  CAS  Google Scholar 

  10. Lindner, R., Kuhnle, A.: On-surface reactions. ChemPhysChem 16, 1582–1592 (2015)

    Article  CAS  Google Scholar 

  11. Fan, Q., Gottfried, J.M., Zhu, J.: Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 48(8), 2484–2494 (2015)

    Article  CAS  Google Scholar 

  12. Shen, Q., Gao, H.-Y., Fuchs, H.: Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017)

    Article  CAS  Google Scholar 

  13. Björk, J., Hanke, F., Stafström, S.: Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 135(15), 5768–5775 (2013)

    Article  Google Scholar 

  14. Treier, M., et al.: Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3(1), 61–67 (2011)

    Article  CAS  Google Scholar 

  15. Berner, N.C., et al.: Adsorption of 5,10,15,20-tetrakis (4-bromophenyl) porphyrin on germanium(001). Phys. Status Solidi C 9, 1404–1407 (2012)

    Article  CAS  Google Scholar 

  16. Berner, N.C.: Towards stable molecular nanostructures on a semiconductor surface. School of Physics, Trinity College, University of Dublin, Dublin, Ireland (2012)

    Google Scholar 

  17. Kolmer, M., et al.: Polymerization of polyanthrylene on a titanium dioxide (011)-(2×1) surface. Angew. Chem. Int. Ed. 52, 10300–10303 (2013)

    Article  CAS  Google Scholar 

  18. Kolmer, M., et al.: On-surface polymerization on a semiconducting oxide: aryl halide coupling controlled by surface hydroxyl groups on rutile TiO2(011). Chem. Commun. 51, 11276–11279 (2015)

    Article  CAS  Google Scholar 

  19. Vasseur, G., et al.: Pi band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor. J. Am. Chem. Soc. 138(17), 5685–5692 (2016)

    Article  CAS  Google Scholar 

  20. Olszowski, P., et al.: Aryl halide C–C coupling on Ge(001): H surfaces. J. Phys. Chem. C 119(49), 27478–27482 (2015)

    Article  CAS  Google Scholar 

  21. Kittelmann, M., et al.: On-surface covalent linking of organic building blocks on a bulk insulator. ACS Nano 5, 8420–8425 (2011)

    Article  CAS  Google Scholar 

  22. Kittelmann, M., et al.: Sequential and site-specific on-surface synthesis on a bulk insulator. ACS Nano 7(6), 5614–5620 (2013)

    Article  CAS  Google Scholar 

  23. Bieri, M., et al.: Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010)

    Article  CAS  Google Scholar 

  24. Zebari, A.A.A., Kolmer, M., Prauzner-Bechcicki, J.S.: STM tip-assisted engineering of molecular nanostructures: PTCDA islands on Ge(001):H surfaces. Beilstein J. Nanotechnol. 4, 927–932 (2013)

    Google Scholar 

  25. Zebari, A.A.A., Kolmer, M., Prauzner-Bechcicki, J.S.: Characterization of PTCDA nanocrystals on Ge(001):H-(2 × 1) surfaces. Appl. Surf. Sci. 332, 403–408 (2015)

    Google Scholar 

  26. Loske, F., et al.: Growth of ordered C-60 islands on TiO2(110). Nanotechnology 20(6) (2009)

    Google Scholar 

  27. Prauzner-Bechcicki, J.S., et al.: High-resolution STM studies of terephthalic acid molecules on rutile TiO2(110)-(1 × 1) surfaces. J. Phys. Chem. C 113(21), 9309–9315 (2009)

    Article  CAS  Google Scholar 

  28. Godlewski, S., et al.: Adsorption of organic molecules on the TiO2(011) surface: STM study. J. Chem. Phys. 134(22), 224701 (2011)

    Article  Google Scholar 

  29. Godlewski, S., et al.: Supramolecular ordering of PTCDA molecules: the key role of dispersion forces in an unusual transition from physisorbed into chemisorbed state. ACS Nano 6(10), 8536–8545 (2012)

    Article  CAS  Google Scholar 

  30. Godlewski, S., et al.: [11]Anthrahelicene on TiO2 surfaces. Surf. Sci. 606(21–22), 1600–1607 (2012)

    Article  CAS  Google Scholar 

  31. Grinter, D.C., et al.: Binding of a benzoate dye-molecule analogue to rutile titanium dioxide surfaces. J Phys. Chem. C 116(1), 1020–1026 (2012)

    Article  CAS  Google Scholar 

  32. English, C.R., et al.: Formation of self-assembled monolayers of pi-conjugated molecules on TiO2 surfaces by thermal grafting of aryl and benzyl halides. Langmuir 28(17), 6866–6876 (2012)

    Article  CAS  Google Scholar 

  33. Lanzilotto, V., et al.: Commensurate growth of densely packed PTCDI islands on the rutile TiO2(110) surface. J. Phys. Chem. C 117(24), 12639–12647 (2013)

    Article  CAS  Google Scholar 

  34. Zając, Ł., et al.: Ordered heteromolecular overlayers formed by metal phthalocyanines and porphyrins on rutile titanium dioxide surface studied at room temperature. J. Chem. Phys. 143(22), 224702 (2015)

    Article  Google Scholar 

  35. Godlewski, S., et al.: Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces. Beilstein J. Nanotechnol. 6, 1498–1507 (2015)

    Article  CAS  Google Scholar 

  36. Zajac, L., et al.: Self-assembling of Zn porphyrins on a (110) face of rutile TiO2–The anchoring role of carboxyl groups. Appl. Surf. Sci. 379, 277–281 (2016)

    Article  CAS  Google Scholar 

  37. Prauzner-Bechcicki, J.S., et al.: Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania. Beilstein J. Nanotechnol. 7, 1642–1653 (2016)

    Article  CAS  Google Scholar 

  38. Prauzner-Bechcicki, J., Kolmer, M., Szymonski, M.: Aryl–aryl coupling on semiconductor surfaces. In: Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier, Amsterdam. http://doi.org/10.1016/B978-0-12-409547-2.13105-1 (2017)

  39. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003)

    Article  CAS  Google Scholar 

  40. Pang, C.L., Lindsay, R., Thornton, G.: Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37(10), 2328–2353 (2008)

    Article  CAS  Google Scholar 

  41. Dohnálek, Z., Lyubinetsky, I., Rousseau, R.: Thermally-driven processes on rutile TiO2(110)-(1 × 1): a direct view at the atomic scale. Prog. Surf. Sci. 85(5–8), 161–205 (2010)

    Article  Google Scholar 

  42. Thomas, A.G., Syres, K.L.: Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 41(11), 4207–4217 (2012)

    Article  CAS  Google Scholar 

  43. Godlewski, S., Szymonski, M.: Adsorption and self-assembly of large polycyclic molecules on the surfaces of TiO2 single crystals. Int. J. Mol. Sci. 14(2), 2946–2966 (2013)

    Article  CAS  Google Scholar 

  44. Pang, C.L., Lindsay, R., Thornton, G.: Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem. Rev. 113(6), 3887–3948 (2013)

    Article  CAS  Google Scholar 

  45. Henderson, M.A.: A surface science perspective on photocatalysis. Surf. Sci. Rep. 66(6–7), 185–297 (2011)

    Article  CAS  Google Scholar 

  46. Zhang, Z., Yates, J.T.: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012)

    Article  CAS  Google Scholar 

  47. Thompson, T.L., Yates, J.T.: TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top. Catal. 35(3), 197–210 (2005)

    Article  CAS  Google Scholar 

  48. Thompson, T.L., Yates, J.T.: Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 106(10), 4428–4453 (2006)

    Article  CAS  Google Scholar 

  49. Guo, Q., et al.: Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45(13), 3701–3730 (2016)

    Article  CAS  Google Scholar 

  50. Cai, Y., Feng, Y.P.: Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Prog. Surf. Sci. 91(4), 183–202 (2016)

    Article  CAS  Google Scholar 

  51. Ramamoorthy, M., Vanderbilt, D., Kingsmith, R.D.: 1st-Principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 49(23), 16721–16727 (1994)

    Article  CAS  Google Scholar 

  52. Gong, X.-Q., et al.: The 2 × 1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf. Sci. 603(1), 138–144 (2009)

    Article  CAS  Google Scholar 

  53. Torrelles, X., et al.: Geometric structure of TiO2(011)-(2 × 1). Phys. Rev. Lett. 101(18), 185501 (2008)

    Article  CAS  Google Scholar 

  54. Yurtsever, A., et al.: Imaging the TiO2(011)-(2 × 1) surface using noncontact atomic force microscopy and scanning tunneling microscopy. J. Phys. Chem. C 120(6), 3390–3395 (2016)

    Article  CAS  Google Scholar 

  55. Pang, C.L., et al.: (2n × 1) Reconstructions of TiO2(011) revealed by noncontact atomic force microscopy and scanning tunneling microscopy. J. Phys. Chem. C 118(40), 23168–23174 (2014)

    Article  CAS  Google Scholar 

  56. Kubo, T., Orita, H., Nozoye, H.: Surface structures of rutile TiO2(011). J. Am. Chem. Soc. 129(34), 10474–10478 (2007)

    Article  CAS  Google Scholar 

  57. Dupont, C., et al.: Structure of TiO2(011) revealed by photoelectron diffraction. Phys. Rev. B 94(24), 241304 (2016)

    Article  Google Scholar 

  58. Woolcot, T., et al.: Scanning tunneling microscopy contrast mechanisms for TiO2. Phys. Rev. Lett. 109(15) (2012)

    Google Scholar 

  59. Wang, Q., et al.: The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study. Phys. Chem. Chem. Phys. 18(29), 19549–19556 (2016)

    Article  CAS  Google Scholar 

  60. Dulub, O., et al.: Structure, defects, and impurities at the rutile TiO2(011)-(2 × 1) surface: a scanning tunneling microscopy study. Surf. Sci. 600(19), 4407–4417 (2006)

    Article  CAS  Google Scholar 

  61. Kolmer, M., et al.: Temperature-dependent orientation of self-organized nanopatterns on ion-irradiated TiO2(110). Phys. Rev. B 88(19), 195427 (2013)

    Article  Google Scholar 

  62. Tao, J.G., et al.: Diffusion and reaction of hydrogen on rutile TiO2(011)-2 × 1: the role of surface structure. J. Phys. Chem. C 116(38), 20438–20446 (2012)

    Article  CAS  Google Scholar 

  63. Li, M., et al.: The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals. J. Phys. Chem. B 104(20), 4944–4950 (2000)

    Article  CAS  Google Scholar 

  64. Setvin, M., et al.: Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113(8), 086402 (2014)

    Article  Google Scholar 

  65. Deskins, N.A., Rousseau, R., Dupuis, M.: Defining the Role of Excess Electrons in the Surface Chemistry of TiO2. The Journal of Physical Chemistry C 114(13), 5891–5897 (2010)

    Article  CAS  Google Scholar 

  66. Kowalski, P.M., et al.: Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys. Rev. Lett. 105(14), 146405 (2010)

    Article  Google Scholar 

  67. Heckel, W., et al.: The role of hydrogen on the adsorption behavior of carboxylic acid on TiO2 surfaces. J. Phys. Chem. C 118(20), 10771–10779 (2014)

    Article  CAS  Google Scholar 

  68. Yuan, F., et al.: The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces: a first-principles study. Surf. Sci. 628, 126–131 (2014)

    Article  CAS  Google Scholar 

  69. Zhang, D., Yang, M., Dong, S.: Hydroxylation of the rutile TiO2(110) surface enhancing its reducing power for photocatalysis. J. Phys. Chem. C 119(3), 1451–1456 (2014)

    Article  Google Scholar 

  70. Zhang, Z., Yates, J.T.: A new form of chemisorbed photo- and electro-active atomic H species on the TiO2(110) surface. Surf. Sci. 652, 195–199 (2016)

    Article  CAS  Google Scholar 

  71. Mao, X., et al.: Band-gap states of TiO2(110): major contribution from surface defects. J. Phys. Chem. Lett. 4(22), 3839–3844 (2013)

    Article  CAS  Google Scholar 

  72. Yang, W., et al.: Controlled vacancy-assisted C–C couplings of acetaldehyde on rutile TiO2(110). J. Phys. Chem. C 118(48), 27920–27924 (2014)

    Article  CAS  Google Scholar 

  73. Idriss, H., Barteau, M.A.: Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces. Catal. Lett. 40(3), 147–153 (1996)

    Article  CAS  Google Scholar 

  74. Benz, L., et al.: McMurry chemistry on TiO2(110): reductive C=C coupling of benzaldehyde driven by titanium interstitials. J. Am. Chem. Soc. 131(41), 15026–15031 (2009)

    Article  CAS  Google Scholar 

  75. Benz, L., et al.: Molecular imaging of reductive coupling reactions: interstitial-mediated coupling of benzaldehyde on reduced TiO2(110). ACS Nano 5(2), 834–843 (2011)

    Article  CAS  Google Scholar 

  76. Cremer, T., Jensen, S.C., Friend, C.M.: Enhanced photo-oxidation of formaldehyde on highly reduced o-TiO2(110). J. Phys. Chem. C 118(50), 29242–29251 (2014)

    Article  CAS  Google Scholar 

  77. Koch, M., et al.: Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7(11), 713–717 (2012)

    Article  CAS  Google Scholar 

  78. Li, S.-C., et al.: Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science 328(5980), 882–884 (2010)

    Article  CAS  Google Scholar 

  79. Saywell, A., et al.: Polymerization on stepped surfaces: alignment of polymers and identification of catalytic sites. Angew. Chem. Int. Ed. 51(21), 5096–5100 (2012)

    Article  CAS  Google Scholar 

  80. Kawai, S., et al.: Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc. Natl. Acad. Sci. U S A 111(11), 3968–3972 (2014)

    Article  CAS  Google Scholar 

  81. Di Giovannantonio, M., et al.: Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7(9), 8190–8198 (2013)

    Article  Google Scholar 

  82. Miccio, L.A., et al.: Interplay between steps and oxygen vacancies on curved TiO2(110). Nano Lett. 16(3), 2017–2022 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from the Polish Ministry of Science and Higher Education, contract no. 0341/IP3/2016/74 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kolmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolmer, M., Prauzner-Bechcicki, J.S. (2018). Aryl–Aryl Covalent Coupling on Rutile TiO2 Surfaces. In: de Oteyza, D., Rogero, C. (eds) On-Surface Synthesis II. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-75810-7_7

Download citation

Publish with us

Policies and ethics