Skip to main content

Application of Multisensory Technology for Resolution of Problems in the Field of Research and Preservation of Cultural Heritage

  • Conference paper
  • First Online:
Advances in Digital Cultural Heritage

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10754))

Abstract

This chapter presents a new line of research that addresses the treatment of data acquired through different sensors to capture reality in order to obtain useful information that can be applied to the generation of knowledge in the field of conservation and restoration of Cultural Heritage. This technology is expected to be used to solve impact problems in this field. The ultimate goal is the generation of work strategies to enhance the quality of the service provided to visitors and, consequently, their satisfaction. The multidisciplinary nature of the tasks to be tackled requires the joint work of specialists from such diverse areas as Computer Vision and Archaeology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 131–144 (2000)

    Google Scholar 

  2. Koller, D., Trimble, J., Najbjerg, T., Gelfand, N., Levoy, M.: Fragments of the city: Stanford’s digital forma urbis romae project. J. Roman Archaeol. Suppl. 61, 237–252 (2006)

    Google Scholar 

  3. Siotto, E., Dellepiane, M., Callieri, M., Scopigno, R., Gratziu, C., Moscato, A., Burgio, L., Legnaioli, S., Lorenzetti, G., Palleschi, V.: A multidisciplinary approach for the study and the virtual reconstruction of the ancient polychromy of Roman sarcophagi. J. Cult. Heritage 16, 307–314 (2015)

    Article  Google Scholar 

  4. Potenziani, M., Callieri, M., Dellepiane, M., Corsini, M., Ponchio, F., Scopigno, R.: 3DHOP: 3D Heritage online presenter. Comput. Graph. 52, 129–141 (2015)

    Article  Google Scholar 

  5. Scopigno, R., Cignoni, P., Pietroni, N., Callieri, M., Dellepiane, M.: Digital fabrication techniques for Cultural Heritage: a survey. Comput. Graph. Forum 36(1), 6–21 (2016)

    Article  Google Scholar 

  6. Lerma, J.L., Cabrelles, M., Navarro, S.: Fusion of range-based data and image-based datasets for efficient documentation of Cultural Heritage objects and sites. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, pp. 277–281 (2015)

    Google Scholar 

  7. Domingo, I., Villaverde, V., López-Montalvo, E., Lerma, J.L., Cabrelles, M.: Latest developments in rock art recording: Towards an integral documentation of Levantine rock art sites combining 2D and 3D recording techniques. J. Archaeol. Sci. 40(4), 1879–1889 (2012)

    Article  Google Scholar 

  8. Adán, A., Salamanca, S., Merchán, P.: A hybrid human-computer approach for recovering incomplete Cultural Heritage pieces. Comput. Graph. 36(1), 1–15 (2012)

    Article  Google Scholar 

  9. Merchán, P., Salamanca, S., Adán, A.: Restitution of sculptural groups using 3D scanners. Sensors (MDPI) 11(9), 8497–8518 (2011)

    Article  Google Scholar 

  10. Merchán, P., Adán, A., Salamanca, S., Domínguez, V., Chacón, R.: Geometric and colour data fusion for outdoor 3D models. Sensors (MDPI) 12(6), 6893–6919 (2012)

    Article  Google Scholar 

  11. Grinzato, E.: IR thermography applied to the Cultural Heritage conservation. In: 18th World Conference on Nondestructive Testing (2012)

    Google Scholar 

  12. Mercuri, F., Orazi, N., Zammit, U., Paoloni, S., Marinelli, M., Valentini, P.P.: Thermographic analysis of Cultural Heritage: recent applications and perspectives. E-preservation Sci. 9, 84–89 (2012)

    Google Scholar 

  13. Sidiropoulou-Velidou, D., Georgopoulos, A., Lerma, J.L.: Exploitation of thermal imagery for the detection of pathologies in monuments. In: Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R. (eds.) EuroMed 2012. LNCS, vol. 7616, pp. 97–108. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34234-9_10

    Chapter  Google Scholar 

  14. Alba, M.I., Barazzetti, L., Scaioni, M., Rosina, E., Previtali, M.: Mapping infrared data on terrestrial laser scanning 3D models of buildings. Remote Sens. 3, 1847–1870 (2011)

    Article  Google Scholar 

  15. Borrmann, D., Nüchter, A., Dakulovic, M., Maurovic, I., Petrovic, I., Osmankovic, D., Velagic, J.: The project thermalmapper – thermal 3D mapping of indoor environments for saving energy. In: The 10th International IFAC Symposium on Robot Control (SYROCO 2012), Dubrovnik, Croatia (2012)

    Google Scholar 

  16. Borrmann, D., Elseberg, J., Nüchter, A.: Thermal 3D mapping of building façades. In: Lee, S., Cho, H., Yoon, K.J., Lee, J. (eds.) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol. 193, pp. 173–182. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Lagüela, S., Martínez, J., Armesto, J., Arias, P.: Energy efficiency studies through 3D laser scanning and thermographic technologies. Energy Build. 43, 1216–1221 (2011)

    Article  Google Scholar 

  18. Cabrelles, M., Galcerá, S., Navarro, S., Lerma, J.L., Akasheh, T.: Haddad, N.: Integration of 3D laser scanning, photogrammetry and thermography to record architectural monuments. In: 22nd CIPA Symposium (2009)

    Google Scholar 

  19. Fernandes, L., Nogales, T.: Programas decorativos teatrales de Lusitania: teatro romano de Olisipo. In: Escultura romana en Hispania VIII (in press)

    Google Scholar 

  20. Velázquez, A.: Placa con inscripción sobre la restauración del circo romano de Mérida. In: Alvarez, J.M., Carvalho, A., Fabiao, C. (eds.) Lusitania Romana. Origen de dos pueblos, pp. 309–310 (2015)

    Google Scholar 

  21. Università di Firenze, with Paolo Liverani in the lead, or Ny Carlsberg Glyptotek with its project Tracking Colour (http://www.trackingcolour.com/) among others

  22. Poksińska, M., Cupa, A., Socha-Bystroń, S.: Thermography in the investigation of gilding on historical wall paintings. In: 9th International Conference on Quantitative InfraRed Thermography, Krakow – Poland (2008)

    Google Scholar 

  23. Donia, G., Orazi, N., Mercuri, F., Cicero, C., Zammit, U., Paoloni, S., Marinelli, M.: Thermographic study of the illuminations of a 15th century antiphonary. J. Cult. Heritage 15(6), 692–697 (2014)

    Article  Google Scholar 

  24. Vide bibliography of G. Borghini, P. Pensabene, P. Lapuente, J. Beltrán, etc.

    Google Scholar 

  25. Volk, R., Stengel, J., Schultmann, F.: Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 38, 109–127 (2014)

    Article  Google Scholar 

  26. Merchán, P., Rivera, B., Salamanca, S., Merchán, M.J.: From BIM to HBIM: current state and perspectives. In: Cultural Heritage: Perspectives, Challenges and Future Directions. Nova Science Publishers, New York (2017)

    Google Scholar 

  27. Adan, A., Huber, D.: Reconstruction of wall surfaces under occlusion and clutter in 3D indoor environments. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA CMU-RI-TR-10-12 (2010)

    Google Scholar 

  28. Ham, Y., Golparvar-Fard, M.: An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery. Adv. Eng. Inform. 27, 395–409 (2013)

    Article  Google Scholar 

  29. Rangel, J., Soldan, S., Kroll, A.: 3D Thermal imaging: fusion of thermography and depth cameras. In: Quantitative InfraRed Thermography (2014)

    Google Scholar 

  30. Borrmann, D., Nüchter, A., Ðakulović, M., Maurovic, I., Petrović, I., Osmankovic, D., Velagić, J.: A mobile robot based system for fully automated thermal 3D mapping. Adv. Eng. Inform. 28(4), 425–440 (2014)

    Article  Google Scholar 

  31. Mader, D., Blaskow, R., Westfeld, P., Weller, C.: Potential of UAV-Based laser scanner and multispectral camera data in building inspection. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, pp. 1135–1142 (2016)

    Google Scholar 

  32. Wang, C., Cho, Y.K., Gai, M.: As-Is 3D thermal modeling for existing building envelopes using a hybrid LIDAR system. J. Comput. Civil Eng. 27, 645–656 (2013)

    Article  Google Scholar 

  33. González-Aguilera, D., Rodriguez-Gonzalvez, P., Armesto, J., Lagüela, S.: Novel approach to 3D thermography and energy efficiency evaluation. Energy Build. 54, 436–443 (2012)

    Article  Google Scholar 

  34. López-Fernández, L., Lagüela, S., González-Aguilera, D., Lorenzo, H.: Thermographic and mobile indoor mapping for the computation of energy losses in buildings. Indoor Built Environ. 26(6), 1–14 (2016)

    Google Scholar 

  35. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1106–1112 (1997)

    Google Scholar 

  36. Demantké, J., Mallet, C., David, N., Vallet, B.: Dimensionality based scale selection in 3D LIDAR point clouds. In: ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, vol. XXXVIII-5/, pp. 97–102 (2012)

    Google Scholar 

  37. Nurunnabi, A., Belton, D., West, G.: Robust segmentation for large volumes of laser scanning three-dimensional point cloud data. IEEE Trans. Geosci. Remote Sens. 54, 4790–4805 (2016)

    Article  Google Scholar 

  38. Bassier, M., Vergauwen, M., Van Genechten, B.: Automated classification of Heritage Buildings for as-built BIM using machine learning techniques. In: SPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W2 (2017)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the projects IB16162 from Junta de Extremadura and Fondo Europeo de Desarrollo Regional “Una manera de hacer Europa” and DPI2016-76380-R, from the Spanish Ministry of Economy, Industry and Competitiveness, and by the FEDER Funds (Programa Operativo FEDER de Extremadura 2014-2020) through the grant “Ayuda a Grupos de Investigación” (ref. GR15178) of Junta de Extremadura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Merchán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merchán, P., Merchán, M.J., Salamanca, S., Adán, A. (2018). Application of Multisensory Technology for Resolution of Problems in the Field of Research and Preservation of Cultural Heritage. In: Ioannides, M., Martins, J., Žarnić, R., Lim, V. (eds) Advances in Digital Cultural Heritage. Lecture Notes in Computer Science(), vol 10754. Springer, Cham. https://doi.org/10.1007/978-3-319-75789-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75789-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75788-9

  • Online ISBN: 978-3-319-75789-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics