Ink-Jet Printer’s Characterization by 3D Gradation Trajectories on an Equidistant Color Difference Basis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10749)

Abstract

We suggest using 3D gradation curves of CIE Lab space, which we call “gradation trajectories”, as further development of common gradation curves. The trajectories are considered in terms of 3D curves of differential geometry. We offer the gradation trajectories, as well as their calculating method, as a powerful tool for ink-jet system characterization and further profile-making. In the work, we develop our method and apply it to ink-jet printer’s characterization on a basis of equidistant color difference CIE Lab ΔE. We discuss the information that might be derived from the trajectories’ analysis and show how they might me generally applicable.

Keywords

Gradation trajectories Ink-jet Characterization Profile Dot–gain 

References

  1. 1.
    Balasubramanian, R.: Optimization of the spectral Neugebauer model for printer characterization. J. Electron. Imaging 8, 156–166 (1999)CrossRefGoogle Scholar
  2. 2.
    Bala, R.: Device characterization. In: Sharma, G. (ed.) Digital Color Imaging Handbook, pp. 269–379. CRC Press, Boca Raton (2003)Google Scholar
  3. 3.
    Kubelka, P., Munk, F.: Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für technische Physik 12, 593–601 (1931). GermanyGoogle Scholar
  4. 4.
    Neugebauer, H.E.J.: Die theoretischen Grundlagen des Mehrfarbendrucks. Zeinschrift fur Wissenschaftliche Photographie Photophysik Photochemie 36, 36–73 (1937)Google Scholar
  5. 5.
    Yule, J.A.C., Nielsen, W.J.: The penetration of light into paper and its effect on halftone reproductions. In: Proceedings of TAGA Conference 1951, pp. 65–76. TAGA, Sewickley (1951)Google Scholar
  6. 6.
    Viggiano, J.A.S.: Modeling the color of multi-colored halftones. In: Proceedings of TAGA Conference 1990, pp. 44–62. TAGA, Sewickley (1990)Google Scholar
  7. 7.
    Hersch, R.D., Crété, F.: Improving the Yule–Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions. In: Proceedings of SPIE, vol. 5667, pp. 434–445 (2005)Google Scholar
  8. 8.
    Wyble, D.R., Berns, R.S.: A critical review of spectral models applied to binary color printing. Color Res. Appl. 25, 4–19 (2000)CrossRefGoogle Scholar
  9. 9.
    Garg, N.P., Singla, A.K., Hersch, R.D.: Calibrating the Yule–Nielsen modified spectral Neugebauer model with ink spreading curves derived from digitized RGB calibration patch images. J. Imaging Sci. Technol. 52(4), 040908-1–040908-5 (2008)Google Scholar
  10. 10.
    Arney, J.S., Engeldrum, P.G., Zeng, H.: An expanded Murray-Davis model of tone reproduction in halftone imaging. J. Imaging Sci. Technol. 39, 502–508 (1995)Google Scholar
  11. 11.
    Livens, S.: Optimisation of printer calibration in the case of multi density inks. In: Conference on Color in Graphics, Imaging, and Vision, CGIV 2002 Final Program and Proceedings, pp. 633–638 (2002)Google Scholar
  12. 12.
    Chagas, L., Blayo, A., Giraud, P.: Color Profile: methodology and influence on the performance of ink-jet color reproduction. In: IS&T’s NIP20: 2004 International Conference on Digital Printing Technologies, pp. 655–659 (2004)Google Scholar
  13. 13.
    Wu, Y.-J.: Reducing ink-jet ink consumption with RIP software for POP display media. In: Digital Fabrication and Digital Printing: NIP30 Technical Program and Proceedings, pp. 108–111 (2014)Google Scholar
  14. 14.
    Kipphan, H.: Handbook of Print Media, p. 1207. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-540-29900-4 CrossRefGoogle Scholar
  15. 15.
    Milder, O.B., Tarasov, D.A., Titova, M.Y.: Inkjet printers linearization using 3D gradation curves. In: CEUR Workshop Proceedings. Proceedings of the 1st International Workshop on Radio Electronics & Information Technologies (REIT 2017), Yekaterinburg, Russia, 15 March 2017, vol. 1814, pp. 74–83 (2017)Google Scholar
  16. 16.
    Jeffreys, H., Jeffreys, B.S.: Weierstrass’s Theorem on Approximation by Polynomials and Extension of Weierstrass’s Approximation Theory, §14.08–14.081 in Methods of Mathematical Physics, 3rd edn, pp. 446–448. Cambridge University Press, Cambridge (1988)Google Scholar
  17. 17.
    Pogorelov, A.V.: Differential geometry. Noordhoff, 171p. (1959). (Translated from Russian)Google Scholar
  18. 18.
    Rosenholm, J.B.: Liquid spreading on solid surfaces and penetration into porous matrices: coated and uncoated papers. Adv. Colloid Interface Sci. 220, 8–53 (2015)CrossRefGoogle Scholar
  19. 19.
    Pauli, H.: Proposed extension of the CIE recommendation on “uniform color spaces, color difference equations, and metric color terms”. J. Opt. Soc. Am. 66, 866–867 (1976)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Radio-Engineering and ITUral Federal UniversityEkaterinburgRussia
  2. 2.Institute of Industrial Ecology UB RASEkaterinburgRussia

Personalised recommendations