Gaussian Noise Detection and Adaptive Non-local Means Filter

  • Peng Chen
  • Shiqian Wu
  • Hongping Fang
  • Bin Chen
  • Wei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10749)


In this paper, a noise adaptive non-local means (NA-NLM) filter is presented to remove additive Gaussian noise from the corrupted images. Firstly, a novel pixel-wise Gaussian noise detection is proposed via eigen features of local Hessian matrix, and a metric is introduced to measure noise strength. Then, image denoising is performed by adaptive NLM filter according to the pixel-wise noise strength, i.e., the NLM filter varies adaptively with the size selections of the search window and similar patches. Experiments carried on Tampere Image Database (TID) demonstrate that the proposed method outperforms the state-of-the-art methods in terms of the peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and subjective visual assessment.



This work was supported by the National Natural Science Foundation of China under Grant 61371190.


  1. 1.
    Buades, A., Coll, B., Morel Song, J.M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Lebrun, M., Colom, M., Buades, A., Morel, J.M.: Secrets of image denoising cuisine. Acta Numerica 21(1), 475–576 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Milanfar, P.: A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Signal Process. Mag. 30(1), 106–128 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jain, P., Tyagi, V.: A survey of edge-preserving image denoising methods. Inf. Syst. Front. 18(1), 159–170 (2016)CrossRefGoogle Scholar
  5. 5.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (2002)CrossRefGoogle Scholar
  6. 6.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: The Sixth IEEE International Conference on Computer Vision, pp. 839–846. IEEE Computer Society, Washington, DC (1998)Google Scholar
  7. 7.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: The 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65. IEEE Computer Society, Washington, DC (2005)Google Scholar
  8. 8.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)CrossRefGoogle Scholar
  9. 9.
    Chan, R.H., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)CrossRefGoogle Scholar
  10. 10.
    Ng, P.E., Ma, K.K.: A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Trans. Image Process. 15(6), 1506–1516 (2006)CrossRefGoogle Scholar
  11. 11.
    Dong, Y., Chan, R.H., Xu, S.: A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. 16(4), 1112–1120 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhang, X., Xiong, Y.: Impulse noise removal using directional difference based noise de-tector and adaptive weighted mean filter. IEEE Signal Process. Lett. 16(4), 295–298 (2009)CrossRefGoogle Scholar
  13. 13.
    Bai, T., Tan, J.: Automatic detection and removal of high-density impulse noises. IET Image Process. 9(2), 162–172 (2015)CrossRefGoogle Scholar
  14. 14.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)Google Scholar
  15. 15.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). CrossRefGoogle Scholar
  16. 16.
    Florack, L.M., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image Vis. Comput. 10(6), 376–388 (1992)CrossRefMATHGoogle Scholar
  17. 17.
    Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983–995 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tampere Image Database 2008 (TID 2008).
  20. 20.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Peng Chen
    • 1
  • Shiqian Wu
    • 1
  • Hongping Fang
    • 2
  • Bin Chen
    • 2
  • Wei Wang
    • 1
  1. 1.Key Laboratory of Metallurgical Equipment and Control TechnologyMinistry of EducationWuhanChina
  2. 2.School of Information Science and TechnologyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations