Skip to main content

Part of the book series: Springer Climate ((SPCL))

  • 1365 Accesses

Abstract

This chapter examines the impacts of climate change on the health of women and girls in the Global South. There is increasing understanding and awareness about the direct and indirect impacts of climate change on communicable and non-communicable diseases. These impacts are not gender neutral. Specifically, in the Global South, the impacts are disproportionately greater on women’s health than men, due to combination of existing health infrastructure, lack of women’s empowerment, and cultural norms. It is noteworthy that indicators for women’s health should not be limited to only reproductive or maternal health but should include the entire lifespan to address the needs of girls and older women. For instance, in the majority of the rural areas of the Global South, the poorer households do not have piped water supply. In these areas women are responsible for walking long distances to fetch water for the daily needs of their families. The increasing trends in daytime temperatures will expose them to harsher conditions. Furthermore, the projected expansion in the geographic spread of infectious diseases will disproportionately affect women and girls due to higher levels of malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Zhou et al. (2004).

References

  • Ahmed, S., & Fajber, E. (2009). Engendering adaptation to climate variability in Gujarat, India. Gender and Development, 17, 33–50.

    Article  Google Scholar 

  • Akhtar, R., & McMichael, A. J. (1996). Rainfall and malaria outbreaks in western Rajasthan. Lancet, 348, 1457–1458.

    Article  CAS  Google Scholar 

  • Alonso, D., Bouma, M. J., & Pascual, M. (2011). Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proceedings of the Royal Society B: Biological Sciences, 278, 1661–1669.

    Article  Google Scholar 

  • Aron, J., & Patz, J. A. (Eds.). (2002). Ecosystem change and public health. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Bacaër, N., & Guernaoui, S. (2006). The epidemic threshold of vector borne diseases with seasonality. Journal of Mathematical Biology, 53, 421–436.

    Article  Google Scholar 

  • Barrera, R., Amador, M., & Clark, G. G. (2006). Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. Journal of Medical Entomology, 43, 484–492.

    Article  Google Scholar 

  • Barrera, R., Amador, M., & MacKay, A. J. (2011). Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Neglected Tropical Disease, 5. https://doi.org/10.1371/journal.pntd.0001378.

  • Basurko, C., Carles, G., Youssef, M., & Guindi, W. E. (2009). Maternal and foetal consequences of dengue fever during pregnancy. European Journal of Obstetrics & Gynecology and Reproductive Biology, 147, 29–32.

    Article  Google Scholar 

  • Beggs, P. (2004). Impact of climate change on aeroallergens: Past and future. Clinical and Experimental Allergy, 34, 1507–1513.

    Article  CAS  Google Scholar 

  • Béguin, A., Hales, S., Rocklöv, J., Åström, C., Louis, V. R., & Sauerborn, R. (2011). The opposing effects of climate change and socio-economic development on the global distribution of malaria. Global Environmental Change, 21(4), 1209–1214.

    Article  Google Scholar 

  • Bouma, M. J., & Dye, C. (1997). Cycles of malaria associated with El Niño in Venezuela. The Journal of the American Medical Association, 278, 1772–1774.

    Article  CAS  Google Scholar 

  • Bouma, M. J., Poveda, G., Rojas, W., Chavasse, D., Quinones, M., Cox, J., et al. (1997). Predicting high-risk years for malaria in Colombia using parameters of El Niño Southern Oscillation. Tropical Medicine & International Health, 2, 1122–1127.

    Article  CAS  Google Scholar 

  • Caminade, C., Kovats, S., Rocklov, J., Tompkins, A. M., Morse, A. P., Colón-González, F. J., et al. (2014). Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences., 111, 3286–3291.

    Article  CAS  Google Scholar 

  • Campbell-Lendrum, D., Manga, L., Bagayoko, M., & Sommerfeld, J. (2015). Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370, 20130552.

    Article  Google Scholar 

  • Carles, G. (1999). Effects of dengue fever during pregnancy in French Guiana. Clinical Infectious Diseases, 28, 637–640.

    Article  CAS  Google Scholar 

  • CDC. (2015). Where malaria occurs. Retrieved September 9, 2015, from http://www.cdc.gov/malaria/about/distribution.html

  • Chaves, L. F., & Koenraadt, C. J. M. (2010). Climate change and highland malaria: Fresh air for a hot debate. The Quarterly Review of Biology, 85(1), 27–55.

    Article  Google Scholar 

  • Dellicour, S., Tatem, A. J., Guerra, C. A., Snow, R. W., & ter Kuile, F. O. (2010). Quantifying the number of pregnancies at risk of malaria in 2007: A demographic study. PLoS Medicine, 7, e.1000221.

    Article  Google Scholar 

  • Ebi, K. L., Mearns, L. O., & Nyenzi, B. (2003). Weather and climate: Changing human exposures. In A. J. McMichael, D. H. Campbell-Lendrum, C. F. Corvalán, K. L. Ebi, A. K. Githeko, J. D. Scheraga, et al. (Eds.), Climate change and human health: Risks and responses. Geneva: World Health Organization.

    Google Scholar 

  • Emert, V., Fink, A. H., & Paeth, H. (2013). The potential effects of climate change on malaria transmission in Africa using bias-corrected regionalised climate projections and a simple malaria seasonality model. Climatic Change, 120, 741–754.

    Article  Google Scholar 

  • Epstein, P. R. (2000). Is global warming harmful to health? Scientific American, 283, 50–57.

    Article  CAS  Google Scholar 

  • Gates, M. (2015). Valuing the health and contribution of women is central to global development. The Lancet, 386. https://doi.org/10.1016/S0140-6736(15)60940-0.

  • Gillies, M. T. (1953). The duration of the gonotrophic cycle in Anopheles gambiae and An. funestus with a note on the efficiency of hand catching. East African Medical Journal, 30(1953), 129–135.

    CAS  Google Scholar 

  • Githeko, A. K., Lindsay, S. W., Confalonieri, U. E., & Patz, J. A. (2000). Climate change and vector-borne diseases: A regional analysis. Bulletin of the World Health Organization, 78, 1136–1147.

    CAS  Google Scholar 

  • Hoberg, E. P. (2015). Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 370. https://doi.org/10.1098/rstb.2013.0553.

  • Hoeck, P. A. E., Ramberg, F. B., Merrill, S. A., Moll, C., & Hagedorn, H. H. (2003). Population and parity levels of Aedes aegypti collected in Tucson. Journal of Vector Ecology, 28, 65–73.

    Google Scholar 

  • Horton, R., & Ceschia, A. (2015). Making women count. The Lancet, 386, 1112–1114.

    Article  Google Scholar 

  • Koenraadt, C. J. M., Githeko, A. K., & Takken, W. (2014). The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae ss and Anopheles arabiensis in a Kenyan village. Acta Tropica, 90(2), 141–153.

    Article  Google Scholar 

  • Kolivras, K. N. (2010). Changes in dengue risk potential in Hawaii, USA, due to climate variability and change. Climate Research, 42, 1–11.

    Article  Google Scholar 

  • Lambrechts, L., Paaijmans, K. P., Fansiri, T., Carrington, L. B., Kramer, L. D., Thomas, M. B., et al. (2011). Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proceedings of the National Academy of Sciences, 108, 7460–7465.

    Article  CAS  Google Scholar 

  • Langer, A., Meleis, A., Knaul, F. M., Atun, R., Aran, M., Arreola-Ornelas, H., et al. (2015). Women and health: The key for sustainable development. The Lancet, 386, 1165–1210. https://doi.org/10.1016/S0140-6736(15)60497-4.

    Article  Google Scholar 

  • Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. The Lancet, 380, 2095–2128.

    Article  Google Scholar 

  • Machado, C. R., Machado, E. S., Rohloff, R. D., Azevedo, M., Campos, D. P., de Oliveira, R. B., et al. (2013). Is pregnancy associated with severe dengue? A review of data from the Rio de Janeiro surveillance information system. PLoS Neglected Tropical Diseases, 7. https://doi.org/10.1371/journal.pntd.0002217.

    Article  CAS  Google Scholar 

  • Malhotra, I., Dent, A., Mungai, P., Wamachi, A., Ouma, J. H., Narum, D. L., et al. (2009). Can prenatal malaria exposure produce an immune tolerant phenotype? A prospective birth cohort study in Kenya. PLoS Medicine, 6, e1000116.

    Article  Google Scholar 

  • Martens, W. J. M., Niessen, L. W., Rotmans, J., Jetten, T. H., & McMichael, A. J. (1995). Potential impact of global climate change on malaria risk. Environment Health Perspectives, 103, 458–464.

    Article  CAS  Google Scholar 

  • Martens, W. J. M., Jetten, T. H., Rotmans, J., & Niessen, L. W. (1995). Climate change and vector-borne diseases: A global modelling perspective. Global Environment Change, 5, 195–209.

    Article  Google Scholar 

  • Martin, P. H., & Lefebvre, M. G. (1995). Malaria and climate: Sensitivity of malaria potential transmission to climate. Ambio, 24, 200–207.

    Google Scholar 

  • Matsuoka, Y., & Kai, K. (1994). An estimation of climatic change effects on malaria. Journal of Global Environmental Engineering, 1, 1–15.

    Google Scholar 

  • McGeehin, M. A., & Mirabelli, M. (2001). The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environment Health Perspectives, 109, 185–189.

    Article  Google Scholar 

  • McKinsey Global Institute. (2015). The power of parity: How advancing women’s equality can add $12 trillion dollars. Retrieved October 2, 2015, from www.mckinsey.com/mgi

  • McMichael, A. J., Wooodruff, R. E., & Hales, S. (2006). Climate change and human health: Present and future risks. The Lancet, 367, 859–869.

    Article  Google Scholar 

  • McMichael, A. J., Campbell-Lendrum, D. H., Corvalán, C. F., Ebi, K. L., Githeko, A., Scheraga, J. D., et al. (2003). Climate change and human health: Risks and responses. Geneva: World Health Organization.

    Google Scholar 

  • Met Office. (2015). Heat wave. Retrieved September 17, 2015, from http://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/heatwave

  • Moise, Imelda K., et al. (2016). Seasonal and geographic variation of pediatric malaria in Burundi: 2011 to 2012. International journal of environmental research and public health 13(4), 425.

    Article  Google Scholar 

  • Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and dengue transmission: Evidence and implications. Environmental Health Perspectives, 121, 1264–1272.

    Google Scholar 

  • Naicker, S., Plange-Rhule, J., Tutt, R. C., & Eastwood, J. B. (2009). Shortage of healthcare workers in developing countries—Africa. Ethnicity and Diseases, 19, S1–S60.

    Google Scholar 

  • Paaijmans, K. P., Read, A. F., & Thomas, M. B. (2009). Understanding the link between malaria risk and climate. Proceedings of the National Academy of Sciences, 106, 13844–13849.

    Article  CAS  Google Scholar 

  • Patz, J. A., Graczyk, T. K., Geller, N., & Vittor, A. Y. (2000). Effects of environmental change on emerging parasitic diseases. International Journal for Parasitology, 30(12), 1395–1405.

    Article  CAS  Google Scholar 

  • Prothero, R. M. (1994). Forced movements of population and health hazards in tropical Africa. International Journal Epidemiology, 23, 657–664.

    Article  CAS  Google Scholar 

  • Rogers, D. J., & Randolph, S. E. (2000). The global spread of malaria in a future, warmer world. Science, 289, 1763–1766.

    Article  CAS  Google Scholar 

  • Rueda, L. M., Patel, K. J., Axtell, R. C., & Stinner, R. E. (1990). Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 27, 892–898.

    Article  CAS  Google Scholar 

  • Scott, S., Mens, P. F., Tinto, H., Nahum, A., Ruizendaal, E., Pagnoni, F., et al. (2014). Community-based scheduled screening and treatment of malaria in pregnancy for improved maternal and infant health in The Gambia, Burkina Faso and Benin: Study protocol for a randomized controlled trial. Trials, 15, 340.

    Article  Google Scholar 

  • Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., et al. (2012). Changes in climate extremes and their impacts on the natural physical environment. In Managing the risks of extreme events and disasters to advance climate change adaptation, A special report of working groups I and II of the Intergovernmental Panel on Climate Change (p. 109). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Tantawichien, T. (2012). Dengue fever and dengue haemorrhagic fever in adolescents and adults. Pediatrics and International Child Health, 32, 22–27.

    Article  Google Scholar 

  • Troyo, A., Fuller, D. O., Calderón‐Arguedas, O., Solano, M. E., & Beier, J. C. (2009). Urban structure and dengue fever in Puntarenas, Costa Rica. Singapore Journal of Tropical Geography, 30, 265–282.

    Article  Google Scholar 

  • Turell, M. J. (1989). Effects of environmental temperature on the vector competence of Aedes fowleri for Rift Valley fever virus. Research in Virology, 140, 147–154.

    Article  CAS  Google Scholar 

  • UN. (2016). SDGs: Sustainable development knowledge platform. United Nations. Retrieved December 29, 2016, from https://sustainabledevelopment.un.org/sdgs

  • Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E., & Nisalak, A. (1987). Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. American Journal of Tropical Medicine and Hygiene, 36, 143–152.

    Article  CAS  Google Scholar 

  • WHO. (2008). The global burden of disease: 2004 update. Geneva: Author.

    Google Scholar 

  • WHO. (2012). Global strategy for dengue prevention and control. Geneva: Author.

    Google Scholar 

  • WHO. (2014). World malaria report 2014. Geneva: Author.

    Google Scholar 

  • WHO. (2015a). The world health report 2002: Reducing risks promoting healthy life. Retrieved August 10, 2015, from http://www.who.int/whr/2002/en/whr02_en.pdf?ua=1

  • WHO. (2015b). Climate change and health fact sheet n°266. Retrieved August 10, 2015, from http://www.who.int/mediacentre/factsheets/fs266/en/

  • WHO. (2015c). Global health estimates 2014 summary tables: Deaths by cause, age and sex, by WHO region, 2000-2012. Retrieved September 29, 20015, from http://www.who.int/mediacentre/factsheets/fs310/en/index4.html

  • WHO. (2015d). DengueNet database and geographic information system. Retrieved September 30, 2015, from http://apps.who.int/globalatlas/DataQuery/default.asp

  • WHO. (2015e). Gender, climate, change and health. Retrieved October 1, 2015, from http://apps.who.int/iris/bitstream/10665/144781/1/9789241508186_eng.pdf?ua=1v

  • WHO. (2017). Climate change and health fact sheet n°266. Retrieved November 14, 2017, from http://www.who.int/mediacentre/factsheets/fs266/en/

  • WHO and WMO. (2015). Atlas of health and climate. Retrieved August 10, 2015, from http://www.who.int/globalchange/publications/atlas/report/en/

  • WHO/TDR. (2009). Dengue guidelines for diagnosis, treatment, prevention and control. Geneva: WHO.

    Google Scholar 

  • WMO. (2013). The global climate 2001–2010: A decade of climate extremes summary report. Geneva: Author.

    Google Scholar 

  • Wong, J., Stoddard, S. T., Astete, H., Morrison, A. C., & Scott, T. W. (2011). Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Neglected Tropical Disease, 5. https://doi.org/10.1371/journal.pntd.0001015.

  • Zhou, G., Minakawa, N., Githeko, A. K., & Yan, G. (2004). Association between climate variability and malaria epidemics in the East African highlands. Proceedings of the National Academy of Sciences, 101, 2375–2380.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen Roy, S. (2018). Health. In: Linking Gender to Climate Change Impacts in the Global South. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-75777-3_3

Download citation

Publish with us

Policies and ethics