Advertisement

The Effects of Melanin-Concentrating Hormone on Neurotransmitter Systems Involved in the Generation and Maintenance of Wakefulness

  • Jaime M. Monti
  • Seithikurippu R. Pandi-Perumal
  • Pablo Torterolo
Chapter

Abstract

Within the central nervous system (CNS), melanin-concentrating hormone (MCH) participates in a number of functions including sleep-wake behavior. In this respect, MCHergic neurons project widely throughout the central nervous system (CNS) to neural structures involved in the regulation of wakefulness (W). An enhancement of REM sleep time has been described following the microinjection of MCH into the dorsal raphe nucleus (serotonergic neurons), locus coeruleus nucleus (noradrenergic neurons), and basal forebrain [(horizontal limb of the diagonal band of Broca) glutamatergic and cholinergic (W-on) neurons] of rodents. In addition, optogenetic stimulation of MCH terminals in the tuberomammillary nucleus (histaminergic neurons) is followed by an increase in the duration of REM sleep episodes. Moreover, the finding that the neuropeptide negatively modulates the mesolimbic dopaminergic function tends to indicate that the inhibition of nucleus accumbens and ventral tegmental nucleus dopaminergic neurons by MCH could facilitate the occurrence of REM sleep. Thus, the REM sleep-inducing and sleep-facilitating effect of MCH is at least partly related to the deactivation of monoaminergic, glutamatergic, and cholinergic (W-on) neurons.

Keywords

Melanin-concentrating hormone REM sleep Wakefulness Serotonin Norepinephrine Dopamine Glutamate Acetylcholine 

References

  1. Alberto CO, Trask RB, Hirasawa M (2011) Dopamine acts as a partial agonist for α2A adrenoceptor in melanin-concentrating hormone neurons. J Neurosci 31:10671–10676CrossRefGoogle Scholar
  2. Bayer L, Eggermann E, Serafin M, Grivel J, Machard D, Muhlethaler M et al (2005) Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience 130:807–811CrossRefGoogle Scholar
  3. Bittencourt JC (2011) Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol 172:185–197CrossRefGoogle Scholar
  4. Bittencourt JC, Elias CF (1998) Melanin-concentrating hormone and neuropeptide EI projections from the lateral hypothalamic area and zona incerta to the medial septal nucleus and spinal cord: a study using multiple neural tracers. Brain Res 805:1–19CrossRefGoogle Scholar
  5. Bittencourt JC, Press F, Arias C, Peto C, Vaughan J, Nahon JL et al (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245CrossRefGoogle Scholar
  6. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH (2002) The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16:1959–1973CrossRefGoogle Scholar
  7. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187CrossRefGoogle Scholar
  8. Clément O, Sapin E, Bérod A, Fort P, Luppi PH (2011) Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 34:419–423CrossRefGoogle Scholar
  9. Conductier G, Nahon JL, Guyon A (2011) Dopamine depresses melanin-concentrating hormone neuronal activity through multiple effects on α2-noradrenergic, D1 and D2-like dopaminergic receptors. Neuroscience 178:89–100CrossRefGoogle Scholar
  10. Del Cid-Pellitero E, Jones BE (2012) Immunohistochemical evidence for synaptic release of GABA from MCH-containing varicosities in the locus coeruleus. Neuroscience 223:269–276CrossRefGoogle Scholar
  11. Deurveilheur S, Semba L (2011) Basal forebrain regulation of cortical activity and sleep-wake states: roles of cholinergic and non-cholinergic neurons. Sleep Biol Rhythms 9(Suppl. 1):65–70CrossRefGoogle Scholar
  12. Devera A, Pascovich C, Lagos P, Falconi A, Sampogna S, Chase MH et al (2015) Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe nucleus. Brain Res 1598:114–128CrossRefGoogle Scholar
  13. Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB et al (2001) Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol 432:1–19CrossRefGoogle Scholar
  14. Elias CF, Sita LV, Zambon BK, Oliveira ER, Vasconcelos LAP, Bittencourt JC (2008) Melanin-concentrating hormone projections to areas involved in somatomotor responses. J Chem Neuroanat 35:188–201CrossRefGoogle Scholar
  15. Freund TF, Gulyas AI (1991) GABAergic interneurons containing calbindin D28K or somatostatin are major targets of GABAergic basal forebrain afferents in the rat neocortex. J Comp Neurol 314:187–199CrossRefGoogle Scholar
  16. Gao XB, van den Pol AN (2001) Melanin-concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol 55:237–252CrossRefGoogle Scholar
  17. Harthoorn LF (2007) Projection-dependent differentiation of melanin-concentrating hormone-containing neurons. Cell Mol Neurobiol 27:49–55CrossRefGoogle Scholar
  18. Hawes BE, Kil E, Green B, O’Neill K, Fried S, Graziano MP (2000) The melanin-concentrating hormone receptor couples to multiple G proteins to activate diverse intracellular signaling pathways. Endocrinology 141:4524–4532CrossRefGoogle Scholar
  19. Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S et al (2000) The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, sic-1, in the central nervous system of the rat. Eur J Neurosci 12:1194–1216CrossRefGoogle Scholar
  20. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58CrossRefGoogle Scholar
  21. Hong EY, Yoon YS, Lee HS (2011) Differential distribution of melanin-concentrating hormone (MCH) and hypocretin (Hcrt)-immunoreactive neurons projecting to the mesopontine cholinergic complex in the rat. Brain Res 1424:20–31CrossRefGoogle Scholar
  22. Jego S, Glasgow SD, Gutierrez-Herrera C, Ekstrand M, Reed SJ, Boyce R et al (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1644CrossRefGoogle Scholar
  23. Jones BE (2003) Arousal systems. Front Bioci 8:438–451CrossRefGoogle Scholar
  24. Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. TIPS 26:578–586PubMedGoogle Scholar
  25. Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM (2009) Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res 1265:103–110CrossRefGoogle Scholar
  26. Lagos P, Torterolo P, Jantos H, Monti JM (2011) Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness. Brain Res 1369:112–111CrossRefGoogle Scholar
  27. Lagos P, Monti JM, Jantos H, Torterolo P (2012) Microinjections of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci 90:895–899CrossRefGoogle Scholar
  28. Lee M, Hassani O, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25:4365–4369CrossRefGoogle Scholar
  29. Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C et al (1999) The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol 1:267–271CrossRefGoogle Scholar
  30. Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:191–202Google Scholar
  31. Luppi PH, Clément O, Fort P (2013) Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Curr Opin Neurobiol 23:1–7CrossRefGoogle Scholar
  32. McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8:302–330CrossRefGoogle Scholar
  33. Monti JM, Jantos H (2009) The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Progr Brain Res 172:625–646CrossRefGoogle Scholar
  34. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133CrossRefGoogle Scholar
  35. Monti JM, Lagos P, Jantos H, Torterolo P (2015) Increased REM sleep after intra-locus coeruleus nucleus microinjection of melanin-concentrating hormone (MCH) in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 56:185–188CrossRefGoogle Scholar
  36. Monti JM, Torterolo P, Jantos H, Lagos P (2016) Microinjection of the melanin-concentrating hormone into the sublaterodorsal tegmental nucleus inhibits REM sleep in the rat. Neurosci Lett 630:66–69CrossRefGoogle Scholar
  37. Pace-Schott EF, Hobson JA (2002) Basic mechanisms of sleep: new evidence on the neuroanatomy and neuromodulation of the NREM-REM cycle. In: Charney D, Nemeroff C (eds) Neuropsychopharmacology—the fifth generation of progress. Lippincott, Williams and Wilkins, Philadelphia, pp 1859–1877Google Scholar
  38. Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF et al (2008) Dysregulation of the mesolimbic dopamine system and reward in MCH−/− mice. Biol Psychiatry 64:184–191CrossRefGoogle Scholar
  39. Rodrigo-Angulo M, Heredero S, Rodríguez-Veiga E, Reinoso-Suárez F (2008) GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the oral pontine reticular nucleus: their implication in REM sleep regulation. Brain Res 1210:116–125CrossRefGoogle Scholar
  40. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS et al (2001) Identification and characterization of a second melanin-concentrating hormone receptor MCH-2R. Proc Natl Acad Sci U S A 98:7564–7569CrossRefGoogle Scholar
  41. Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435:26–40CrossRefGoogle Scholar
  42. Sapin E, Lapray D, Bérod A, Goutagny R, Léger L, Ravassard P et al (2009) Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One 4:1–12CrossRefGoogle Scholar
  43. Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C (2010) A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 5(7):e11766.  https://doi.org/10.1371/journal.pone.0011766CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sekiya K, Ghatei MA, Lacoumenta S, Burnet PW, Zamir N, Burrin JM et al (1988) The distribution of melanin-concentrating hormone-like immunoreactivity in the central nervous system of rat, guinea-pig and man. Neuroscience 25:925–930CrossRefGoogle Scholar
  45. Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115:117–141CrossRefGoogle Scholar
  46. Semba K (2011) Preoptic and basal forebrain modulation of REM sleep. In: Mallick BN, Pandi-Perumal SR, McCarley R, Morrison AR (eds) REM sleep: regulation and function. Cambridge University Press, Cambridge, pp 99–109Google Scholar
  47. Skofitsch G, Jacobowitz DM, Zamir N (1985) Immunohistochemical localization of melanin-concentrating hormone-like peptide in the rat brain. Brain Res Bull 15:653–649Google Scholar
  48. Smith DG, Tzavara ET, Shaw J, Luecke S, Wade M, Davis R et al (2005) Mesolimbic dopamine super-sensitivity in melanin-concentrating hormone-1 receptor-deficient mice. J Neurosci 25:914–922CrossRefGoogle Scholar
  49. Szymusiak R, Gvilia I, McGinty D (2007) Hypothalamic control of sleep. Sleep Med 8:291–301CrossRefGoogle Scholar
  50. Torterolo P, Lagos P, Monti JM (2011) Melanin-concentrating hormone: a new sleep factor? Front Neurol 2:2–12CrossRefGoogle Scholar
  51. Urbanavicius J, Lagos P, Torterolo P, Abin-Carriquiry JA (2016) Melanin-concentrating hormone projections to the dorsal raphe nucleus: an immunofluorescence and in vivo microdialysis study. J Chem Neuroanat 72:16–24CrossRefGoogle Scholar
  52. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:635–652CrossRefGoogle Scholar
  53. Yang N, Zhang KY, Wang FF, Hu ZA, Zhang J (2014) Dopamine inhibits neurons from the rat dorsal subcoeruleus nucleus through the activation of α2-adrenergic receptors. Neurosci Lett 559:61–66CrossRefGoogle Scholar
  54. Yoon YS, Lee HS (2013) Projections from melanin-concentrating hormone (MCH) neurons to the dorsal raphe or the nuclear core of the locus coeruleus in the rat. Brain Res 1490:72–82CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jaime M. Monti
    • 1
  • Seithikurippu R. Pandi-Perumal
    • 2
  • Pablo Torterolo
    • 3
  1. 1.School of MedicineUniversity of the RepublicMontevideoUruguay
  2. 2.Somnogen Canada Inc.TorontoCanada
  3. 3.Department of Physiology, School of MedicineUniversity of the RepublicMontevideoUruguay

Personalised recommendations