Advertisement

Optogenetic Control of the Melanin-Concentrating Hormone Expressing Neurons

  • Carlos Blanco-Centurion
  • Meng Liu
  • Priyattam Shiromani
Chapter

Abstract

Since the discovery of the neuropeptide melanin-concentrating hormone (MCH) more than half a century ago, MCH neurons have spawned hundreds of scientific studies. MCH neurons are a phylogenetically well-conserved group of hypothalamic neurons. The MCH neurons project diffusely throughout the CNS but only reside within a restricted area encompassing the incerto-lateral and perifornical hypothalamus. Here we review optogenetic studies focused on understanding the functions of the MCH neurons, particularly their role as sleep modulators. We attempted to put optogenetic findings in context with other studies focused on neuronal/behavioral modulation by MCH or its receptors. We also laid a theoretical framework to understand better the data on MCH neuronal activity in relation to the activity of the orexin neurons. For readers not familiar with optogenetics, we also went over major developments in this new field.

References

  1. Adamantidis A, Salvert D, Goutagny R, Lakaye B, Gervasoni D, Grisar T, Luppi PH, Fort P (2008) Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci 27(7):1793–1800PubMedPubMedCentralGoogle Scholar
  2. Ahnaou A, Drinkenburg WH, Bouwknecht JA, Alcazar J, Steckler T, Dautzenberg FM (2008) Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep-wake architecture. Eur J Pharmacol 579(1–3):177–188PubMedPubMedCentralGoogle Scholar
  3. Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH (2011) Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (−/−) mice. Behav Brain Res 218(1):42–50Google Scholar
  4. Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R, McGinty D (2005) GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol 563(Pt 2):569–582PubMedPubMedCentralGoogle Scholar
  5. Alfoldi P, Rubicsek G, Cserni G, Obal F Jr (1990) Brain and core temperatures and peripheral vasomotion during sleep and wakefulness at various ambient temperatures in the rat. Pflugers Arch 417(3):336–341PubMedPubMedCentralGoogle Scholar
  6. Al-Juboori SI, Dondzillo A, Stubblefield EA, Felsen G, Lei TC, Klug A (2013) Light scattering properties vary across different regions of the adult mouse brain. PLoS One 8(7):e67626PubMedPubMedCentralGoogle Scholar
  7. Alon T, Friedman JM (2006) Late-onset leanness in mice with targeted ablation of melanin concentrating hormone neurons. J Neurosci 26(2):389–397PubMedPubMedCentralGoogle Scholar
  8. Anand BK, Brobeck JR (1951) Hypothalamic control of food intake in rats and cats. Yale J Biol Med 24(2):123–140PubMedPubMedCentralGoogle Scholar
  9. Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schone C, Aitta-Aho T, Adamantidis A, Burdakov D (2015) Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 35(14):5435–5441PubMedPubMedCentralGoogle Scholar
  10. Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143–S156PubMedPubMedCentralGoogle Scholar
  11. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2):205–218PubMedPubMedCentralGoogle Scholar
  12. Arrigoni E, Saper CB (2014) What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 29C:165–171Google Scholar
  13. Aziz A, Fronczek R, Maat-Schieman M, Unmehopa U, Roelandse F, Overeem S, van Duinen S, Lammers GJ, Swaab D, Roos R (2008) Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol 18(4):474–483PubMedPubMedCentralGoogle Scholar
  14. Baker BI, Bird DJ (2002) Neuronal organization of the melanin-concentrating hormone system in primitive actinopterygians: evolutionary changes leading to teleosts. J Comp Neurol 442(2):99–114PubMedPubMedCentralGoogle Scholar
  15. Bamberg E, Tittor J, Oesterhelt D (1993) Light-driven proton or chloride pumping by halorhodopsin. Proc Natl Acad Sci USA 90(2):639–643PubMedPubMedCentralGoogle Scholar
  16. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386PubMedPubMedCentralGoogle Scholar
  17. Bayard S, Dauvilliers YA (2013) Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy. Front Behav Neurosci 7:50PubMedPubMedCentralGoogle Scholar
  18. Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA 108(18):7595–7600PubMedPubMedCentralGoogle Scholar
  19. Berthoud HR, Munzberg H (2011) The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav 104(1):29–39PubMedPubMedCentralGoogle Scholar
  20. Beuckmann CT, Sinton CM, Williams SC, Richardson JA, Hammer RE, Sakurai T, Yanagisawa M (2004) Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J Neurosci 24(18):4469–4477PubMedPubMedCentralGoogle Scholar
  21. Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195(1):115–126PubMedPubMedCentralGoogle Scholar
  22. Bittencourt JC (2011) Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol 172(2):185–197PubMedPubMedCentralGoogle Scholar
  23. Blanco-Centurion C, Liu M, Konadhode R, Pelluru D, Shiromani PJ (2013) Effects of orexin gene transfer in the dorsolateral pons in orexin knockout mice. Sleep 36(1):31–40PubMedPubMedCentralGoogle Scholar
  24. Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ (2016) Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 44(10):2846–2857PubMedPubMedCentralGoogle Scholar
  25. Blouin AM, Fried I, Wilson CL, Staba RJ, Behnke EJ, Lam HA, Maidment NT, Karlsson KAE, Lapierre JL, Siegel JM (2013) Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun 4:1547PubMedPubMedCentralGoogle Scholar
  26. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 8(8):825–830PubMedPubMedCentralGoogle Scholar
  27. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268PubMedPubMedCentralGoogle Scholar
  28. Brecht M, Schneider M, Sakmann B, Margrie TW (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427(6976):704–710PubMedPubMedCentralGoogle Scholar
  29. Brocker DT, Grill WM (2013) Principles of electrical stimulation of neural tissue. Handb Clin Neurol 116:3–18PubMedPubMedCentralGoogle Scholar
  30. Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25(9):2429–2433PubMedPubMedCentralGoogle Scholar
  31. Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA 90(16):7661–7665PubMedPubMedCentralGoogle Scholar
  32. Cardot J, Fellmann D, Bugnon C (1994) Melanin-concentrating hormone-producing neurons in reptiles. Gen Comp Endocrinol 94(1):23–32PubMedPubMedCentralGoogle Scholar
  33. Carlini VP, Schioth HB, de Barioglio SR (2006) Melanin-concentrating hormone (MCH) reverts the behavioral effects induced by inescapable stress. Peptides 27(9):2300–2306PubMedPubMedCentralGoogle Scholar
  34. Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400(6741):261–265PubMedPubMedCentralGoogle Scholar
  35. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451PubMedPubMedCentralGoogle Scholar
  36. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102PubMedPubMedCentralGoogle Scholar
  37. Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31(4):1183–1192PubMedPubMedCentralGoogle Scholar
  38. Clark EL, Baumann CR, Cano G, Scammell TE, Mochizuki T (2009) Feeding-elicited cataplexy in orexin knockout mice. Neuroscience 161(4):970–977PubMedPubMedCentralGoogle Scholar
  39. Clark KL, Armstrong KM, Moore T (2011) Probing neural circuitry and function with electrical microstimulation. Proc Biol Sci 278(1709):1121–1130PubMedPubMedCentralGoogle Scholar
  40. Conductier G, Brau F, Viola A, Langlet F, Ramkumar N, Dehouck B, Lemaire T, Chapot R, Lucas L, Rovere C, Maitre P, Hosseiny S, Petit-Paitel A, Adamantidis A, Lakaye B, Risold PY, Prevot V, Meste O, Nahon JL, Guyon A (2013) Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat Neurosci 16(7):845–847PubMedPubMedCentralGoogle Scholar
  41. Courseaux A, Nahon JL (2001) Birth of two chimeric genes in the Hominidae lineage. Science 291(5507):1293–1297PubMedPubMedCentralGoogle Scholar
  42. Cox J, Pinto L, Dan Y (2016) Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun 7:10763PubMedPubMedCentralGoogle Scholar
  43. Denk W (1994) Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci USA 91(14):6629–6633PubMedPubMedCentralGoogle Scholar
  44. Dhawale AK, Hagiwara A, Bhalla US, Murthy VN, Albeanu DF (2010) Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat Neurosci 13(11):1404–1412PubMedPubMedCentralGoogle Scholar
  45. Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM (2013) Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife 2:e01462PubMedPubMedCentralGoogle Scholar
  46. Espana RA, McCormack SL, Mochizuki T, Scammell TE (2007) Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 30(11):1417–1425PubMedPubMedCentralGoogle Scholar
  47. Farber IC, Grinvald A (1983) Identification of presynaptic neurons by laser photostimulation. Science 222(4627):1025–1027PubMedPubMedCentralGoogle Scholar
  48. Filadelfi AM, Castrucci AM (1994) Melatonin desensitizing effects on the in vitro responses to MCH, alpha-MSH, isoproterenol and melatonin in pigment cells of a fish (S. marmoratus), a toad (B. ictericus), a frog (R. pipiens), and a lizard (A. carolinensis), exposed to varying photoperiodic regimens. Comp Biochem Physiol A Physiol 109(4):1027–1037PubMedPubMedCentralGoogle Scholar
  49. Gao BO, Franken P, Tobler I, Borbely AA (1995) Effect of elevated ambient temperature on sleep, EEG spectra, and brain temperature in the rat. Am J Phys 268(6 Pt 2):R1365–R1373Google Scholar
  50. Gao XB, Ghosh PK, van den Pol AN (2003) Neurons synthesizing melanin-concentrating hormone identified by selective reporter gene expression after transfection in vitro: transmitter responses. J Neurophysiol 90(6):3978–3985PubMedPubMedCentralGoogle Scholar
  51. Gerashchenko D, Kohls MD, Greco M, Waleh NS, Salin-Pascual R, Kilduff TS, Lappi DA, Shiromani PJ (2001) Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J Neurosci 21(18):7273–7283PubMedPubMedCentralGoogle Scholar
  52. Gomori A, Ishihara A, Ito M, Mashiko S, Matsushita H, Yumoto M, Ito M, Tanaka T, Tokita S, Moriya M, Iwaasa H, Kanatani A (2003) Chronic intracerebroventricular infusion of MCH causes obesity in mice. Melanin-concentrating hormone. Am J Physiol Endocrinol Metab 284(3):E583–E588PubMedPubMedCentralGoogle Scholar
  53. Gonzalez JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D (2016) Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 7:11395PubMedPubMedCentralGoogle Scholar
  54. Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL (2011) New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2(3):e00115-00111Google Scholar
  55. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36(1–4):129–139PubMedPubMedCentralGoogle Scholar
  56. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1):154–165PubMedPubMedCentralGoogle Scholar
  57. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13(3):387–392PubMedPubMedCentralGoogle Scholar
  58. Hagglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13(2):246–252PubMedPubMedCentralGoogle Scholar
  59. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2(3):e299PubMedPubMedCentralGoogle Scholar
  60. Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18PubMedPubMedCentralGoogle Scholar
  61. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354PubMedPubMedCentralGoogle Scholar
  62. Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA 106(7):2418–2422PubMedPubMedCentralGoogle Scholar
  63. Henny P, Jones BE (2006) Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 499(4):645–661PubMedPubMedCentralGoogle Scholar
  64. Hess WR, Akert K (1955) Experimental data on role of hypothalamus in mechanism of emotional behavior. AMA Arch Neurol Psychiatry 73(2):127–129PubMedPubMedCentralGoogle Scholar
  65. Heydendael W, Sengupta A, Beck S, Bhatnagar S (2014) Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav 130:182–190PubMedGoogle Scholar
  66. Hoebel BG, Teitelbaum P (1962) Hypothalamic control of feeding and self-stimulation. Science 135(3501):375–377PubMedGoogle Scholar
  67. Hou SY, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL (2012) Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 88(1):119–128PubMedPubMedCentralGoogle Scholar
  68. Huang H, Acuna-Goycolea C, Li Y, Cheng HM, Obrietan K, van den Pol AN (2007) Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: implications for cannabinoid actions on food intake and cognitive arousal. J Neurosci 27(18):4870–4881PubMedPubMedCentralGoogle Scholar
  69. Iggo A (1978) The physiological interpretation of electrical stimulation of the nervous system. Electroencephalogr Clin Neurophysiol Suppl(34):335–341Google Scholar
  70. Inutsuka A, Inui A, Tabuchi S, Tsunematsu T, Lazarus M, Yamanaka A (2014) Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons. Neuropharmacology 85:451–460PubMedPubMedCentralGoogle Scholar
  71. Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54(2):85–94PubMedPubMedCentralGoogle Scholar
  72. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643PubMedPubMedCentralGoogle Scholar
  73. Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG, Huang J, Veleta K, Kantak PA, Aita M, Shilling-Scrivo K, Ramakrishnan C, Deisseroth K, Otte S, Stuber GD (2015) Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160(3):516–527PubMedPubMedCentralGoogle Scholar
  74. Johns DC, Marx R, Mains RE, O’Rourke B, Marban E (1999) Inducible genetic suppression of neuronal excitability. J Neurosci 19(5):1691–1697PubMedPubMedCentralGoogle Scholar
  75. Kelly L, Bielajew C (1996) Short-term stimulation-induced decreases in brown fat temperature. Brain Res 715(1–2):172–179PubMedPubMedCentralGoogle Scholar
  76. Kiyashchenko LI, Mileykovskiy BY, Lai YY, Siegel JM (2001) Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J Neurophysiol 85(5):2008–2016PubMedPubMedCentralGoogle Scholar
  77. Kiyashchenko LI, Mileykovskiy BY, Maidment N, Lam HA, Wu MF, John J, Peever J, Siegel JM (2002) Release of hypocretin (orexin) during waking and sleep states. J Neurosci 22(13):5282–5286PubMedPubMedCentralGoogle Scholar
  78. Kleinlogel S, Terpitz U, Legrum B, Gokbuget D, Boyden ES, Bamann C, Wood PG, Bamberg E (2011) A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins. Nat Methods 8(12):1083–1088PubMedPubMedCentralGoogle Scholar
  79. Kokkotou E, Jeon JY, Wang X, Marino FE, Carlson M, Trombly DJ, Maratos-Flier E (2005) Mice with MCH ablation resist diet-induced obesity through strain-specific mechanisms. Am J Physiol Regul Integr Comp Physiol 289(1):R117–R124PubMedPubMedCentralGoogle Scholar
  80. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33(25):10257–10263PubMedPubMedCentralGoogle Scholar
  81. Lanyi JK (1990) Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol Rev 70(2):319–330PubMedPubMedCentralGoogle Scholar
  82. Lechner HA, Lein ES, Callaway EM (2002) A genetic method for selective and quickly reversible silencing of Mammalian neurons. J Neurosci 22(13):5287–5290PubMedPubMedCentralGoogle Scholar
  83. Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA, Anderson DJ (2007) Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl-channel. Neuron 54(1):35–49PubMedPubMedCentralGoogle Scholar
  84. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 102(49):17816–17821PubMedPubMedCentralGoogle Scholar
  85. Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96(5):1803–1814PubMedPubMedCentralGoogle Scholar
  86. Liu M, Blanco-Centurion C, Konadhode R, Begum S, Pelluru D, Gerashchenko D, Sakurai T, Yanagisawa M, van den Pol AN, Shiromani PJ (2011) Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci 31(16):6028–6040PubMedPubMedCentralGoogle Scholar
  87. Liu M, Blanco-Centurion C, Konadhode RR, Luan L, Shiromani PJ (2016) Orexin gene transfer into the amygdala suppresses both spontaneous and emotion-induced cataplexy in orexin knockout mice. Eur J Neurosci 43(5):681–688PubMedPubMedCentralGoogle Scholar
  88. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E (2001) Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 107(3):379–386PubMedPubMedCentralGoogle Scholar
  89. Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, Hsu YW, Garcia AJ 3rd, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsaki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15(5):793–802PubMedPubMedCentralGoogle Scholar
  90. Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M, Sakurai T (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci USA 106(11):4459–4464PubMedPubMedCentralGoogle Scholar
  91. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth K (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9(2):159–172PubMedPubMedCentralGoogle Scholar
  92. McGregor R, Shan L, Wu MF, Siegel JM (2017) Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: implication for understanding and treating neuronal loss. PLoS One 12(6):e0178573PubMedPubMedCentralGoogle Scholar
  93. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M (2004) Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA 101(13):4649–4654PubMedPubMedCentralGoogle Scholar
  94. Mikrouli E, Wortwein G, Soylu R, Mathe AA, Petersen A (2011) Increased numbers of orexin/hypocretin neurons in a genetic rat depression model. Neuropeptides 45(6):401–406PubMedPubMedCentralGoogle Scholar
  95. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46(5):787–798PubMedPubMedCentralGoogle Scholar
  96. Monzon ME, Varas MM, De Barioglio SR (2001) Anxiogenesis induced by nitric oxide synthase inhibition and anxiolytic effect of melanin-concentrating hormone (MCH) in rat brain. Peptides 22(7):1043–1047PubMedPubMedCentralGoogle Scholar
  97. Morens C, Norregaard P, Receveur JM, van Dijk G, Scheurink AJ (2005) Effects of MCH and a MCH1-receptor antagonist on (palatable) food and water intake. Brain Res 1062(1–2):32–38PubMedPubMedCentralGoogle Scholar
  98. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296(5577):2395–2398PubMedPubMedCentralGoogle Scholar
  99. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100(24):13940–13945PubMedPubMedCentralGoogle Scholar
  100. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284PubMedPubMedCentralGoogle Scholar
  101. Nahon JL (1994) The melanin-concentrating hormone: from the peptide to the gene. Crit Rev Neurobiol 8(4):221–262PubMedPubMedCentralGoogle Scholar
  102. Nishino S, Mignot E (1997) Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 52(1):27–78PubMedPubMedCentralGoogle Scholar
  103. Nofzinger EA, Buysse DJ, Germain A, Price JC, Miewald JM, Kupfer DJ (2004) Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry 161(11):2126–2128PubMedPubMedCentralGoogle Scholar
  104. Nowak LG, Bullier J (1998a) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp Brain Res 118(4):477–488PubMedPubMedCentralGoogle Scholar
  105. Nowak LG, Bullier J (1998b) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp Brain Res 118(4):489–500PubMedPubMedCentralGoogle Scholar
  106. Obal F Jr, Rubicsek G, Alfoldi P, Sary G, Obal F (1985) Changes in the brain and core temperatures in relation to the various arousal states in rats in the light and dark periods of the day. Pflugers Arch 404(1):73–79PubMedPubMedCentralGoogle Scholar
  107. Pelluru D, Konadhode R, Shiromani PJ (2013) MCH neurons are the primary sleep-promoting group. Sleep 36(12):1779–1781PubMedPubMedCentralGoogle Scholar
  108. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015PubMedPubMedCentralGoogle Scholar
  109. Plaha P, Ben Shlomo Y, Patel NK, Gill SS (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129(Pt 7):1732–1747PubMedPubMedCentralGoogle Scholar
  110. Raimondo JV, Kay L, Ellender TJ, Akerman CJ (2012) Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15(8):1102–1104PubMedPubMedCentralGoogle Scholar
  111. Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417–440PubMedPubMedCentralGoogle Scholar
  112. Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB (2008) Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci 28(37):9101–9110PubMedPubMedCentralGoogle Scholar
  113. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LH, Howard AD, Liu Q (2001) Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci USA 98(13):7564–7569PubMedPubMedCentralGoogle Scholar
  114. Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400(6741):265–269PubMedPubMedCentralGoogle Scholar
  115. Schuz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286(4):442–455PubMedPubMedCentralGoogle Scholar
  116. Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE (2013) Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc Natl Acad Sci USA 110(50):20260–20265PubMedPubMedCentralGoogle Scholar
  117. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396(6712):670–674PubMedPubMedCentralGoogle Scholar
  118. Shiromani PJ, Peever JH (2017) New neuroscience tools that are identifying the sleep-wake circuit. Sleep 40(4)Google Scholar
  119. Sinnamon HM (1984) Forelimb and hindlimb stepping by the anesthetized rat elicited by electrical stimulation of the diencephalon and mesencephalon. Physiol Behav 33(2):191–199PubMedPubMedCentralGoogle Scholar
  120. Sinnamon HM (1993) Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Prog Neurobiol 41(3):323–344PubMedPubMedCentralGoogle Scholar
  121. Slimko EM, McKinney S, Anderson DJ, Davidson N, Lester HA (2002) Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J Neurosci 22(17):7373–7379PubMedPubMedCentralGoogle Scholar
  122. Smith OA, DeVito JL, Astley CA (1990) Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perifornical region. Am J Phys 259(5 Pt 2):R943–R954Google Scholar
  123. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702PubMedPubMedCentralGoogle Scholar
  124. Tehovnik EJ (1996) Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods 65(1):1–17PubMedPubMedCentralGoogle Scholar
  125. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474PubMedPubMedCentralGoogle Scholar
  126. Thannickal TC, Lai YY, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130(Pt 6):1586–1595PubMedPubMedCentralGoogle Scholar
  127. Thomas RK, Young CD (1993) A note on the early history of electrical stimulation of the human brain. J Gen Psychol 120(1):73–81PubMedPubMedCentralGoogle Scholar
  128. Tittor J, Oesterhelt D, Maurer R, Desel H, Uhl R (1987) The photochemical cycle of halorhodopsin: absolute spectra of intermediates obtained by flash photolysis and fast difference spectra measurements. Biophys J 52(6):999–1006PubMedPubMedCentralGoogle Scholar
  129. Toossi H, Del Cid-Pellitero E, Jones BE (2016) GABA receptors on orexin and melanin-concentrating hormone neurons are differentially homeostatically regulated following sleep deprivation. eNeuro 3(3)Google Scholar
  130. Torterolo P, Sampogna S, Chase MH (2009) MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 1268:76–87Google Scholar
  131. Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34(20):6896–6909PubMedPubMedCentralGoogle Scholar
  132. Vallarino M, Bruzzone F, Vaudry H (2009) Neuroanatomical distribution of MCH in the brain and pituitary of submammalian vertebrates. Peptides 30(11):1973–1978PubMedPubMedCentralGoogle Scholar
  133. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42(4):635–652PubMedPubMedCentralGoogle Scholar
  134. van der Plas J, Wiersinga-Post JE, Maes FW, Bohus B (1995) Cardiovascular effects and changes in midbrain periaqueductal gray neuronal activity induced by electrical stimulation of the hypothalamus in the rat. Brain Res Bull 37(6):645–656PubMedPubMedCentralGoogle Scholar
  135. Varin C, Arthaud S, Salvert D, Gay N, Libourel PA, Luppi PH, Leger L, Fort P (2016) Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behav Brain Res 298(Pt B):100–110PubMedPubMedCentralGoogle Scholar
  136. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19PubMedPubMedCentralGoogle Scholar
  137. Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102–113PubMedPubMedCentralGoogle Scholar
  138. Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F, Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci USA 104(19):8143–8148PubMedPubMedCentralGoogle Scholar
  139. Wen L, Wang H, Tanimoto S, Egawa R, Matsuzaka Y, Mushiake H, Ishizuka T, Yawo H (2010) Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS One 5(9):e12893PubMedPubMedCentralGoogle Scholar
  140. Wietek J, Prigge M (2016) Enhancing Channelrhodopsins: an overview. Methods Mol Biol 1408:141–165PubMedPubMedCentralGoogle Scholar
  141. Willie JT, Takahira H, Shibahara M, Hara J, Nomiyama M, Yanagisawa M, Sakurai T (2011) Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice. J Mol Neurosci 43(2):155–161PubMedPubMedCentralGoogle Scholar
  142. Wu MF, Gulyani SA, Yau E, Mignot E, Phan B, Siegel JM (1999) Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience 91(4):1389–1399PubMedPubMedCentralGoogle Scholar
  143. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47(12):2059–2073PubMedPubMedCentralGoogle Scholar
  144. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178PubMedPubMedCentralGoogle Scholar
  145. Zemelman BV, Lee GA, Ng M, Miesenbock G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33(1):15–22PubMedPubMedCentralGoogle Scholar
  146. Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA 100(3):1352–1357PubMedPubMedCentralGoogle Scholar
  147. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639PubMedPubMedCentralGoogle Scholar
  148. Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633PubMedPubMedCentralGoogle Scholar
  149. Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8(9):745–752PubMedPubMedCentralGoogle Scholar
  150. Zhou D, Shen Z, Strack AM, Marsh DJ, Shearman LP (2005) Enhanced running wheel activity of both Mch1r- and Pmch-deficient mice. Regul Pept 124(1–3):53–63PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Blanco-Centurion
    • 1
  • Meng Liu
    • 1
  • Priyattam Shiromani
    • 1
    • 2
  1. 1.Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonUSA
  2. 2.US Department of Veterans AffairsRalph Johnson Medical CenterCharlestonUSA

Personalised recommendations