Advertisement

MCH and Depression

  • Jessika Urbanavicius
  • Patricia Lagos
  • Ximena López
  • Pablo Torterolo
  • Cecilia Scorza
Chapter

Abstract

Depression is a mood disorder affecting emotional, somatic, and cognitive domains. The efficacy of the antidepressant therapies is generally acceptable; however, unpleasant or adverse effects, delayed onset of action, and unresponsive patients continue to be the most common problem in the psychiatric practice. Under these circumstances, the recent implication of the hypothalamic neuropeptide melanin-concentrating hormone (MCH) in the regulation of emotion and mood has offered a great opportunity to study this neuropeptidergic system in the neural bases of depression and its treatment.

References

  1. Adell A, Celada P, Abellan MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Rev 39:154–180CrossRefGoogle Scholar
  2. Adrien J (2002) Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 6:341–351CrossRefGoogle Scholar
  3. Andlin-Sobocki P, Wittchen HU (2005) Cost of affective disorders in Europe. Eur J Neurol 1:34–38CrossRefGoogle Scholar
  4. Arango V, Underwood MD, Mann JJ (2002) Serotonin brain circuits involved in major depression and suicide. Prog Brain Res 136:443–453CrossRefGoogle Scholar
  5. Artigas F (2013) Serotonin receptors involved in antidepressant effects. Pharmacol Ther 137(1):119–131CrossRefGoogle Scholar
  6. Bach-Mizrachi H, Underwood MD, Kassir SA, Bakalian MJ, Sibille E, Tamir H, Mann JJ, Arango V (2006) Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31:814–824CrossRefGoogle Scholar
  7. Bittencourt JC (2011) Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol 172(2):185–197CrossRefGoogle Scholar
  8. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245CrossRefGoogle Scholar
  9. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 8(8):825–830CrossRefGoogle Scholar
  10. Browne CA, Lucki I (2013) Antidepressant effects of ketamine: mechanisms under lying fast-acting novel antidepressants. Front Pharmacol 4:161CrossRefGoogle Scholar
  11. Caddy C, Giaroli G, White TP, Shergill SS, Tracy DK (2014) Ketamine as the prototype glutamatérgica antidepressant: pharmacodynamic actions, and a systematic review and meta-analysis of efficacy. Ther Adv Psychopharmacol 4(2):75–99CrossRefGoogle Scholar
  12. Calegare BF, Costa A, Fernandes L, Dias AL, Torterolo P, Almeida VD (2016) Subchronical treatment with Fluoxetine modifies the activity of the MCHergic and hypocretinergic systems. Evidences from peptide CSF concentration and gene expression. Sleep Sci 9(2):89–93CrossRefGoogle Scholar
  13. Calizo LH, Akanwa A, Ma X, Pan YZ, Lemos JC, Craige C, Heemstra LA, Beck SG (2011) Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61(3):524–543CrossRefGoogle Scholar
  14. Castrén E (2013) Neuronal network plasticity and recovery from depression. JAMA Psychiatry 70(9):983–989CrossRefGoogle Scholar
  15. Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70(5):289–297CrossRefGoogle Scholar
  16. Chaki S, Funakoshi T, Hirota-Okuno S, Nishiguchi M, Shimazaki T, Iijima M, Grottick AJ, Kanuma K, Omodera K, Sekiguchi Y, Okuyama S, Tran TA, Semple G, Thomsen W (2005) Anxiolytic- and antidepressant-like profile of ATC0065 and ATC0175: nonpeptidic and orally active melanin-concentrating hormone receptor 1 antagonists. J Pharmacol Exp Ther 313:831–839CrossRefGoogle Scholar
  17. Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400(6741):261–265CrossRefGoogle Scholar
  18. Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M, Hsiung HM, Fox N, Slieker LJ, Yang DD, Heiman ML, Shi Y (2002) Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology 143(7):2469–2477CrossRefGoogle Scholar
  19. Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci 106(16):6772–6777CrossRefGoogle Scholar
  20. Chung S, Parks GS, Lee C, Civelli O (2011) Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci 43:115–121CrossRefGoogle Scholar
  21. Cuijpers P, Beekman ATF, Reynolds CF (2012) Preventing depression. A global priority. JAMA 307(10):1033CrossRefGoogle Scholar
  22. David DJ, Klemenhagen KC, Holick KA, Saxe MD, Mendez I, Santarelli L, Craig DA, Zhong H, Swanson CJ, Hegde LG, Ping XI, Dong D, Marzabadi MR, Gerald CP, Hen R (2007) Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy)phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther 321:237–248CrossRefGoogle Scholar
  23. Dean J, Keshavan M (2017) The neurobiology of depression: an integrated view. Asian J Psychiatr 27:101–111CrossRefGoogle Scholar
  24. Devera A, Paskovich C, Lagos P, Falconi A, Sampogna S, Chase MH, Torterolo P (2015) Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe neurons. Brain Res 1598:114–128CrossRefGoogle Scholar
  25. Diagnostic and statistical manual of mental disorders (DSM-5) (2013) 5th ed. American Psychiatric AssociationGoogle Scholar
  26. Diniz GB, Bittencourt JC (2017) The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci 11:32CrossRefGoogle Scholar
  27. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118CrossRefGoogle Scholar
  28. Eric Hu X, Wos JA, Dowty ME, Suchanek PM, Ji W, Chambers JB, Benoit SC, Clegg DJ, Reizes O (2008) Small-molecule melanin-concentrating hormone-1 receptor antagonists require brain penetration for inhibition of food intake and reduction in body weight. J Pharmacol Exp Ther 324(1):206–213CrossRefGoogle Scholar
  29. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229CrossRefGoogle Scholar
  30. Garcia-Fuster MJ, Parks GS, Clinton SM, Watson SJ, Akil H, Civelli O (2012) The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur Neuropsychopharmacol 22(8):607–613CrossRefGoogle Scholar
  31. Gehlert DR, Rasmussen K, Shaw J, Li X, Ardayfio P, Craft L, Coskun T, Zhang HY, Chen Y, Witkin JM (2009) Preclinical evaluation of melanin-concentrating hormone receptor 1 antagonism for the treatment of obesity and depression. J Pharmacol Exp Ther 329(2):429–438CrossRefGoogle Scholar
  32. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, Bednarek MA, Bibb JA, Maratos-Flier E, Nestler EJ, DiLeone RJ (2005) The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci 25:2933–2940CrossRefGoogle Scholar
  33. Gomori A, Ishihara A, Ito M, Mashiko S, Matsushita H, Yumoto M, Ito M, Tanaka T, Tokita S, Moriya M, Iwaasa H, Kanatani A (2003) Chronic intracerebroventricular infusion of MCH causes obesity in mice. Melanin-concentrating hormone. Am J Physiol Endocrinol Metab 284(3):E583–E588CrossRefGoogle Scholar
  34. González MI, Vaziri S, Wilson CA (1996) Behavioral effects of alpha-MSH and MCH after central administration in the female rat. Peptides 17(1):171–177CrossRefGoogle Scholar
  35. Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK (2003) The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry 64(12):1465–1475CrossRefGoogle Scholar
  36. Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA (2000) The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci 12:1194–1216CrossRefGoogle Scholar
  37. Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI (2001) Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem 276:20125–20129CrossRefGoogle Scholar
  38. Ito M, Ishihara A, Gomori A, Matsushita H, Ito M, Metzger JM, Marsh DJ, Haga Y, Iwaasa H, Tokita S, Takenaga N, Sato N, MacNeil DJ, Moriya M, Kanatani A (2010) Mechanism of the anti-obesity effects induced by a novel melanin-concentrating hormone 1-receptor antagonist in mice. Br J Pharmacol 159(2):374–383CrossRefGoogle Scholar
  39. Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229CrossRefGoogle Scholar
  40. Jezová D, Bartanusz V, Westergren I, Johansson BB, Rivier J, Vale W, Rivier C (1992) Rat melanin-concentrating hormone stimulates adrenocorticotropin secretion: evidence for a site of action in brain regions protected by the blood-brain barrier. Endocrinology 130(2):1024–1029PubMedGoogle Scholar
  41. Kela J, Salmi P, Rimondini-Giorgini R, Heilig M, Wahlestedt C (2003) Behavioural analysis of melanin-concentrating hormone in rats: evidence for orexigenic and anxiolytic properties. Regul Pept 114:109–114CrossRefGoogle Scholar
  42. Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156(6):837–841CrossRefGoogle Scholar
  43. Kennedy AR, Todd JF, Dhillo WS, Seal LJ, Ghatei MA, O'Toole CP, Jones M, Witty D, Winborne K, Riley G, Hervieu G, Wilson S, Bloom SR (2003) Effect of direct injection of melanin-concentrating hormone into the paraventricular nucleus: further evidence for a stimulatory role in the adrenal axis via SLC-1. J Neuroendocrinol 15(3):268–272CrossRefGoogle Scholar
  44. Kim TK, Kim JE, Park JY, Lee JE, Choi J, Kim H, Lee EH, Kim SW, Lee JK, Kang HS, Han PL (2015) Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala. Neurobiol Dis 79:59–69CrossRefGoogle Scholar
  45. Konadhode RR, Pelluru D, Shiromani PJ (2015) Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 8:244CrossRefGoogle Scholar
  46. Lagos P, Torterolo P, Jantos H, Monti J (2011a) Effects on sleep of melanin concentrating hormone into the dorsal raphe nucleus. Brain Res 1265:103–110CrossRefGoogle Scholar
  47. Lagos P, Urbanavicius J, Scorza MC, Miraballes R, Torterolo P (2011b) Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test. Behav Brain Res 218(2):259–266CrossRefGoogle Scholar
  48. Lee C, Parks CS, Civelli O (2010) Anxiolytic effects of the MCH1R antagonist TPI 1361-17. J Mol Neurosci 43(2):132–137CrossRefGoogle Scholar
  49. López Hill X, Pascovich C, Urbanavicius J, Torterolo P, Scorza MC (2013) The median raphe nucleus participates in the depressive-like behavior induced by MCH: differences with the dorsal raphe nucleus. Peptides 50:96–99CrossRefGoogle Scholar
  50. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524):1747–1757CrossRefGoogle Scholar
  51. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E (2001) Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 107(3):379–386CrossRefGoogle Scholar
  52. MacNeil DJ (2013) The role of melanin-concentrating-hormone and its receptors in energy homeostasis. Front Endocrinol 4(49):1–14Google Scholar
  53. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, Guan XM, Jiang MM, Feng Y, Camacho RE, Shen Z, Frazier EG, Yu H, Metzger JM, Kuca SJ, Shearman LP, Gopal-Truter S, MacNeil DJ, Strack AM, MacIntyre DE, Van der Ploeg LH, Qian S (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA 99(5):3240–3245CrossRefGoogle Scholar
  54. Monti JM (2010) The role of the dorsal raphe nucleus serotonergic and non-serotonergic neurons, and their receptors in the regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 14:319–327CrossRefGoogle Scholar
  55. Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17(4):293–298CrossRefGoogle Scholar
  56. Monti JM, Lagos P, Jantos H, Torterolo P (2015) Increased REM sleep after intra-locus coeruleus nucleus microinjection of melanin-concentrating hormone (MCH) in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 56:185–188CrossRefGoogle Scholar
  57. Monzon ME, De Barioglio SR (1999) Response to novelty after i.c.v. injection of melanin-concentrating hormone (MCH) in rats. Physiol Behav 67(5):813–817CrossRefGoogle Scholar
  58. Mul JD, la Fleur SE, Toonen PW, Afrasiab-Middelman A, Binnekade R, Schetters D, Verheij MM, Sears RM, Homberg JR, Schoffelmeer AN, Adan RA, Nair SG, Adams-Deutsch T, Pickens CL, Smith DG, Shaham Y (2009) Effects of the MCH1 receptor antagonist SNAP 94847 on high-fat food-reinforced operant responding and reinstatement of food seeking in rats. Psychopharmacology 205(1):129–140CrossRefGoogle Scholar
  59. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2197–2223CrossRefGoogle Scholar
  60. Nair SG, Adams-Deutsch T, Pickens CL, Smith DG, Shaham Y (2009) Effects of the MCH1 receptor antagonist SNAP 94847 on high-fat food-reinforced operant responding and reinstatement of food seeking in rats. Psychopharmacology 205(1):129–140CrossRefGoogle Scholar
  61. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25CrossRefGoogle Scholar
  62. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D (2013) REM sleep dysregulation in depression: state of the art. Sleep Med Rev 17:377–390CrossRefGoogle Scholar
  63. Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60(1):13–35CrossRefGoogle Scholar
  64. Pruessner M, Hellhammer DH, Pruessner JC, Lupien SJ (2003) Self-reported depressive symptoms and stress levels in healthy young men: associations with the cortisol response to awakening. Psychosom Med 65(1):92–99CrossRefGoogle Scholar
  65. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380(6571):243–247CrossRefGoogle Scholar
  66. Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB (2008) Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci 28(37):9101–9110CrossRefGoogle Scholar
  67. Romero L, Bel N, Artigas F, De Montigny C, Blier P (1996) Effect of pindolol on the function of pre- and postsynaptic 5-HT1A receptors: in vivo microdialysis and electrophysiological studies in the rat brain. Neuropsychopharmacology 15:349–360CrossRefGoogle Scholar
  68. Romero L, Celada P, Martin-Ruiz R, Diaz-Mataix L, Mourelle M, Delgadillo J, Hervás I, Artigas F (2003) Modulation of serotonergic function in rat brain by VN2222, a serotonin reuptake inhibitor and 5-HT1A receptor agonist. Neuropsychopharmacology 28:445–456CrossRefGoogle Scholar
  69. Rosenthal DL, Leibu E, Aloysi AS, Kopell BH, Goodman WK, Kellner CH (2016) Safety and efficacy of electroconvulsive therapy for depression in the presence of deep brain stimulation in obsessive-compulsive disorder. J Clin Psychiatry 77(5):689–690CrossRefGoogle Scholar
  70. Roy M, David NK, Danao JV, Baribault H, Tian H, Giorgetti M (2006) Genetic inactivation of melanin-concentrating hormone receptor subtype 1 (MCHR1) in mice exerts anxiolytic-like behavioral effects. Neuropsychopharmacology 31(1):112–120CrossRefGoogle Scholar
  71. Roy M, David N, Cueva M, Giorgetti M (2007) A study of the involvement of Melanin-Concentrating Hormone Receptor 1 (MCHR1) in murine models of depression. Biol Psychiatry 61(2):174–180CrossRefGoogle Scholar
  72. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD et al (2001) Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci USA 98(13):7564–7569CrossRefGoogle Scholar
  73. Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400:265–269CrossRefGoogle Scholar
  74. Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435(1):26–40CrossRefGoogle Scholar
  75. Schmidt FM, Nowak C, Kratzsch J, Sander C, Hegerl U et al (2015) Dynamics of melanin-concentrating hormone (MCH) serum levels in major depressive disorder during antidepressant treatment. J Affect Disord 180:207–2013CrossRefGoogle Scholar
  76. Scorza MC, Llado-Pelfort L, Oller S, Cortes R, Puigdemont D, Portella MJ, Pérez-Egea R, Alvarez E, Celada P, Pérez V, Artigas F (2012) Preclinical and clinical characterization of the selective serotonin-1A receptor antagonist DU-125530 for antidepressant treatment. Br J Pharmacol 167(5):1021–1034CrossRefGoogle Scholar
  77. Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone RJ (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci 30(24):8263–8273CrossRefGoogle Scholar
  78. Shan GW, Makmor-Bakry M, Omar MS (2016) Long term use of lithium and factors associated with treatment response among patients with bipolar disorder. Psychiatr Danub 28:146–153PubMedGoogle Scholar
  79. Sheline YI (2003) Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 54(3):338–352CrossRefGoogle Scholar
  80. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396(6712):670–674CrossRefGoogle Scholar
  81. Smith DG, Davis RJ, Rorick-Kehn L, Morin M, Witkin JM, McKinzie DL, Nomikos GG, Gehlert DR (2006) Melanin-concentrating hormone-1 receptor modulates neuroendocrine, behavioral, and corticolimbic neurochemical stress responses in mice. Neuropsychopharmacology 31(6):1135–1145CrossRefGoogle Scholar
  82. Smith DG, Hegde LG, Wolinsky TD, Miller S, Papp M, Ping X, Edwards T, Gerald CP, Craig DA (2009) The effects of stressful stimuli and hypothalamic-pituitary-adrenal axis activation are reversed by the melanin-concentrating hormone 1 receptor antagonist SNAP 94847 in rodents. Behav Brain Res 197:284–291CrossRefGoogle Scholar
  83. Stamp JA, Semba K (1995) Extent of colocalization of serotonin and GABA in the neurons of the rat raphe nuclei. Brain Res 677(1):39–49CrossRefGoogle Scholar
  84. Torterolo P, Sampogna S, Morales FR, Chase MH (2006) MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 1119:101–114CrossRefGoogle Scholar
  85. Torterolo P, Sampogna S, Chase MH (2009) MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 1268:76–87CrossRefGoogle Scholar
  86. Torterolo P, Lagos P, Monti JM (2011) Melanin-concentrating hormone: a new sleep factor? Front Neurol 2:14CrossRefGoogle Scholar
  87. Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM (2015) Melanin-Concentrating Hormone (MCH): role in REM sleep and depression. Front Neurosci 9:475CrossRefGoogle Scholar
  88. Urbanavicius J, Lagos P, Torterolo P, Scorza C (2014) Prodepressive effect induced by microinjections of MCH into the dorsal raphe: time course, dose dependence, effects on anxiety-related behaviors, and reversion by nortriptyline. Behav Pharmacol 25(4):316–324CrossRefGoogle Scholar
  89. Urbanavicius J, Lagos P, Torterolo P, Scorza C (2016) Melanin-concentrating hormone projections to the dorsal raphe nucleus: an immunofluorescence and in vivo microdialysis study. J Chem Neuroanat 72:16–24CrossRefGoogle Scholar
  90. Willner P, Scheel-Kruger J, Belzung C (2013) The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 37(10):2331–2371CrossRefGoogle Scholar
  91. World Health Organization (2017) Depression and other common mental disorders. Global health estimates. http://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/
  92. Yoon YS, Lee HS (2013) Projections from melanin-concentrating hormone (MCH) neurons to the dorsal raphe or the nuclear core of the locus coeruleus in the rat. Brain Res 1490:72–82CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jessika Urbanavicius
    • 1
  • Patricia Lagos
    • 2
  • Ximena López
    • 1
  • Pablo Torterolo
    • 2
  • Cecilia Scorza
    • 1
  1. 1.Departamento de Neurofarmacología ExperimentalInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Department of Physiology, School of MedicineUniversity of the RepublicMontevideoUruguay

Personalised recommendations