Acid-Base Balance and Blood Gas Analysis

  • Felice Eugenio AgròEmail author
  • Marialuisa Vennari
  • Maria Benedetto


Cardiac surgery patients may develop alterations of acid-base balance due to cardiac pathology, comorbidities, type and duration of surgery, and CPB. Acid-base status evaluation through ABG is the base for an adequate perioperative treatment. ABG interpretation needs more useful tool than those proposed by Henderson-Hasselbalch approach, such as anion gap, standard base excess, and strong ions difference, in order to identify the underlying acid-base disorders. In this chapter, the physiology and pathophysiology of acid-base balance in cardiac patients and their consequence on perioperative management are described; an overview on ABG interpretation and its relation with diagnostic hypothesis and therapeutic management are presented.


The descriptive approach The semiquantitative approach The quantitative approach Relation among fluid Electrolyte and acid-base balance Basis of pathophysiology acid-base balance in the postoperative ICU setting of cardiac surgery Fluid and electrolyte management consequences on acid-base balance Hyperchloremic acidosis Dilution acidosis Metabolizable anions and base excess Crystalloids and acid-base status Colloids and acid-base status Maintaining acid-base balance Arterial blood gas analysis interpretation Boston rules Base excess Standard base excess Anion gap Stewart approach Metabolic acidosis Metabolic alkalosis Respiratory acidosis Respiratory alkalosis 


  1. Aalkjaer C, Poston L. Effects of pH on vascular tension: which are the important mechanisms? J Vasc Res. 1996;33:347–59.CrossRefPubMedGoogle Scholar
  2. Abramson D, Scalea TM, Hitchcock R, et al. Lactate clearance and survival following injury. J Trauma. 1993;35:584–9.CrossRefPubMedGoogle Scholar
  3. Adrogue HJ, Madias NE. Medical progress: management of life-threatening acid-base disorders—second of two parts. Engl J Med. 1998;338:107–11.CrossRefGoogle Scholar
  4. Agro FE, Vennari M. Physiology of body fluid compartments and body fluid movements. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.CrossRefGoogle Scholar
  5. Agrò FE, Fries D, Vennari M. Cardiac surgery. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.CrossRefGoogle Scholar
  6. Akanji AO, Bruce MA, Frayn KN. Effect of acetate infusion on energy expenditure and substrate oxidation rates in non-diabetic and diabetic subjects. Eur J Clin Nutr. 1989;43:107–15.PubMedGoogle Scholar
  7. Asano S, Kato E, Yamauchi M, et al. The mechanism of the acidosis caused by infusion of saline solution. Lancet. 1966;1:1245–6.CrossRefGoogle Scholar
  8. Astrup P, Jorgensen K, Siggaard-Andersen O. Acid-base metabolism: new approach. Lancet. 1960;1:1035–9.CrossRefPubMedGoogle Scholar
  9. Bakker J, Gris P, Coffermils M, et al. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;224:97–102.Google Scholar
  10. Base EM, Standl T, Lassnigg A, et al. Efficacy and safety of hydroxyethyl starch 6% 130/0.4 in a balanced electrolyte solution (Volulyte) during cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25(3):407–14.CrossRefPubMedGoogle Scholar
  11. Bates CM, Baum M, Quigley R. Cystic fibrosis presenting with hypokalemia and metabolic alkalosis in a previously healthy adolescent. J Am Soc Nephrol. 1997;8:352–5.PubMedGoogle Scholar
  12. Beecher HK, Murphy AJ. Acidosis during thoracic surgery. J Thorac Surg. 1950;19:50.PubMedGoogle Scholar
  13. Beers MH. Acid-base regulation and disorders. In: Beers MH, editor. The Merck manual XVIII. Readington, NJ: Whitehouse Station; 2006.Google Scholar
  14. Brackett NC, Cohen JJ, Schwartz WB. Carbon dioxide titration curve of normal man. N Engl J Med. 1965;272:6–12.CrossRefPubMedGoogle Scholar
  15. Brackett NCJ, Cohen JJ, Schwartz WB. Carbon dioxide titration curve of normal man. N Engl J Med. 1969;272:6–12.CrossRefGoogle Scholar
  16. Celotto AC, Capellini VK, Baldo CF, et al. Effects of acid-base imbalance on vascular reactivity. Braz J Med Biol Res. 2008;41(6):439–45.CrossRefPubMedGoogle Scholar
  17. Choate KA, Kahle KT, Wilson FH, et al. WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localized to diverse Cl transporting epithelia. Proc Natl Acad Sci U S A. 2003;100:663–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clancy RL, Gonzalez NC. Effect of respiratory and metabolic acidosis on coronary vascular resistance. Proc Soc Exp Biol Med. 1975;148:307–11.CrossRefPubMedGoogle Scholar
  19. Coffin LH, Ankeney JL. The effect of extracorporeal circulation upon acid-base equilibrium in dogs. Arch Surg. 1960;80:447.CrossRefPubMedGoogle Scholar
  20. Cowan BN, Burns HJ, Boyle P, et al. The relative prognostic value of lactate and haemodynamic measurements in early shock. Anaesthesia. 1984;39:750–5.CrossRefPubMedGoogle Scholar
  21. Dobell ARC, Gutelius JR, Murphy DR. Acidosis following respiratory alkalosis in thoracic operations with and without heart lung bypass. J Thorac Surg. 1960;39:312.Google Scholar
  22. Ely SW, Sawyer DC, Scott JB. Local vasoactivity of oxygen and carbon dioxide in the right coronary circulation of the dog and pig. J Physiol. 1982;332:427–39.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Falk JL, Rachow EC, Leavy J, et al. Delayed lactate clearance in patients surviving circulatory shock. Acute Care. 1985;11:212–5.PubMedGoogle Scholar
  24. Fanzca RY. Perioperative fluid and electrolyte management in cardiac surgery: a review. J Extra Corpor Technol. 2012;44:20–6.Google Scholar
  25. Fencl V, Jabor A, Kazda A, et al. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162:2246–51.CrossRefPubMedGoogle Scholar
  26. Figge J, Jabor A, Kazda A, et al. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26:1807–10.CrossRefPubMedGoogle Scholar
  27. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.CrossRefPubMedGoogle Scholar
  28. Franco-Cereceda A, Kallner G, Lundberg JM. Capsazepine sensitive release of calcitonin gene-related peptide from Cfibre afferents in the guinea-pig heart by low pH and lactic acid. Eur J Pharmacol. 1993;238:311–6.CrossRefPubMedGoogle Scholar
  29. Friedman C, Berlot G, Kahn RJ, et al. Combined measurement of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med. 1995;23:1184–93.CrossRefPubMedGoogle Scholar
  30. Gibbon JH, Allbritten FP, Stayman JW, Judd JM. A clinical study of respiratory exchange during prolonged operations with an open thorax. Ann Surg. 1950;132:611.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grogono AW, Byles PH, Hawke W. An in vivo representation of acid-base balance. Lancet. 1976;1:499–500.CrossRefPubMedGoogle Scholar
  32. Hayhoe M, Bellomo R, Lin G, et al. The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med. 1999;25:680–5.CrossRefPubMedGoogle Scholar
  33. Henderson LJ. The theory of neutrality regulation in the animal organism. Am J Phys. 1908;21:427.Google Scholar
  34. Henning RJ, Weil MH, Weiner F. Blood lactate as a prognostic indicator of survival in patients with acute myocardial infarction. Circ Shock. 1982;9:307–15.PubMedGoogle Scholar
  35. Himpe D, Neels H, De Hert S, et al. Adding lactate to the prime solution during hypothermic cardiopulmonary bypass: a quantitative acid–base analysis. Br J Anaesth. 2003;90:440–5.CrossRefPubMedGoogle Scholar
  36. Ishizaka H, Kuo L. Acidosis-induced coronary arteriolar dilation is mediated by ATPsensitive potassium channels in vascular smooth muscle. Circ Res. 1996;78:50–7.CrossRefPubMedGoogle Scholar
  37. Ito I, Faulkner WR, Kolff WJ. Metabolic acidosis and its correction in patients undergoing open heart operation; experimental basis and clinical results. Cleve Clin Q. 1957;24:193.CrossRefPubMedGoogle Scholar
  38. Johnson V, Bielanski E, Eiseman B. Lactate metabolism during marginal liver perfusion. Arch Surg. 1969;99:75–9.CrossRefPubMedGoogle Scholar
  39. Kellum JA. Determinants of blood pH in health and disease. Crit Care. 2000;4:6–14.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kellum JA. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acidbase balance with Hextend compared with saline. Crit Care Med. 2002;30:300–5.CrossRefPubMedGoogle Scholar
  41. Kellum JA. Clinical review: reunification of acid–base physiology. Crit Care. 2005a;9:500–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kellum JA. Making strong ion difference the euro for bedside acid-base analysis. Intensive Care Emerg Med. 2005b;14:675–85.Google Scholar
  43. Kellum JA, Weber PAW. Stewart’s textbook of acid-base. 2nd ed. London: Lulu Enterprises; 2009.Google Scholar
  44. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care. 1995;10:51–5.CrossRefPubMedGoogle Scholar
  45. Kincaid EH, Miller PR, Meredith JW, et al. Elevated arterial base deficit in trauma patients: a marker of impaired oxygen utilisation. J Am Coll Surg. 1998;187:384–92.CrossRefPubMedGoogle Scholar
  46. Kirklin JW, Donald DE, Harshbarger HG, et al. Studies in extra- corporeal circulation: applicability of gibbon type pump-oxygenator to human intracardiac surgery-forty cases. Ann Surg. 1956;144:2.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Knowles SE, Jarrett IG, Filsell OH, et al. Production and utilization of acetate in mammals. Biochem J. 1974;142:401–11.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Levraut J, Ciebiera JP, Chave S, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157:1021–6.CrossRefPubMedGoogle Scholar
  49. Liskaser F, Story DA. The acid–base physiology of colloid solutions. Curr Opin Crit Care. 1999;5:440–2.CrossRefGoogle Scholar
  50. Liskaser FJ, Bellomo R, Hayhoe M, et al. Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology. 2000;93:1170–3.CrossRefPubMedGoogle Scholar
  51. Litwin MS, Panico FG, Rubini C, et al. Lacticacidemia in extracorporeal circulation. Ann Surg. 1959;149:188.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lundquist F. Production and utilization of free acetate in man. Nature. 1962;193:579–80.CrossRefPubMedGoogle Scholar
  53. Makoff DL, da Silva JA, Rosenbaum BJ, et al. Hypertonic expansion: acid-base and electrolyte changes. Am J Phys. 1970;218:1201–7.Google Scholar
  54. McFarlane C, Lee A. A comparison of Plasmalyte 148 and 0.9% saline for intraoperative fluid replacement. Anaesthesia. 1994;49:779–81.CrossRefGoogle Scholar
  55. McNelis J, Marini CP, Jurkiewicz A, et al. Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit. Am J Surg. 2001;182:481–5.CrossRefPubMedGoogle Scholar
  56. Mercieri A, Mercieri M. L’approccio quantitativo di Stewart all’equilibrio acido-base. G Ital Nefrol. 2006;3:280–90.Google Scholar
  57. Miller LR, Waters JH. Mechanism of hyperchloremic nonunion gap acidosis. Anesthesiology. 1997;87:1009–10.CrossRefPubMedGoogle Scholar
  58. Morgan TJ. Clinical review: the meaning of acid–base abnormalities in the intensive care unit—effects of fluid administration. Crit Care. 2005;9:204–11.CrossRefPubMedGoogle Scholar
  59. Morgan TJ, Clark C, Endre ZH. The accuracy of base excess: an in vitro evaluation of the van Slyke equation. Crit Care Med. 2000;28:2932–6.CrossRefPubMedGoogle Scholar
  60. Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during acute normovolemic hemodilution. Intensive Care Med. 2004;30:1432–7.CrossRefGoogle Scholar
  61. Mudge GH, Manning JA, Gilman A. Sodium acetate as a source of fixed base. Proc Soc Exp Biol Med. 1949;71:136–8.CrossRefPubMedGoogle Scholar
  62. Narins RG, Gardner LB. Simple acid-base disturbances. Med Clin North Am. 1981;65(321):360.Google Scholar
  63. Prough DS, Bidani A. Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology. 1999;90:1247–9.CrossRefPubMedGoogle Scholar
  64. Prys-Roberts C, Kelman GR, Nunn JF. Determinants of the in vivo carbon dioxide titration curve in anesthetized man. Br J Anesth. 1966;38:500–50.CrossRefGoogle Scholar
  65. Puyau FA, Fowler REL, Novick R, et al. The acid-base vector of open-heart surgery. Circulation. 1962;26:902–12.CrossRefPubMedGoogle Scholar
  66. Quilley CP, Lin YS, McGiff JC. Chloride anion concentration as a determinant of renal vascular responsiveness to vasoconstrictor agents. Br J Pharmacol. 1993;108:106–108.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rehm M, Orth V, Scheingraber S, et al. Acid–base changes caused by 5% albumin versus 6% hydroxyethyl starch solution in patients undergoing acute normovolemic hemodilution: a randomized prospective study. Anesthesiology. 2000;93:1174–83.CrossRefPubMedGoogle Scholar
  68. Reid F, Lobo DN, Williams RN, et al. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104:17–24.PubMedPubMedCentralGoogle Scholar
  69. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRefPubMedGoogle Scholar
  70. Rodriguez-Soriano J. New insight into the pathogenesis of renal tubular acidosis-from functional to molecular studies. Pediatr Nephrol. 2000;14:1121–36.CrossRefPubMedGoogle Scholar
  71. Rose DB. Fisiologia clinica dell’equilibrio acido-base e dei disordini elettrolitici. Milano: McGraw-Hill Libri Italia; 1995.Google Scholar
  72. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265–70.CrossRefPubMedGoogle Scholar
  73. Schlichtig R, Grogono AW, Severinghaus JW. Current status of acid-base quantitation in physiology and medicine. Anesthesiol Clin North Am. 1998a;16:211–33.CrossRefGoogle Scholar
  74. Schlichtig R, Grogono AW, Severinghaus JW. Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med. 1998b;26:1173–9.CrossRefPubMedGoogle Scholar
  75. Severinghaus JW. Acid-base balance nomogram–a Boston-Copenhagen détente. Anesthesiology. 1976;45:539–41.CrossRefPubMedGoogle Scholar
  76. Sgambato F, Prozzo S. Gap anionico: un ponte tra i due equilibri. Giorn Ital Med Int. 2003;2(1):20–7.Google Scholar
  77. Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci. 2001;322:316–32.CrossRefPubMedGoogle Scholar
  78. Shires GT, Holman J. Dilution acidosis. Ann Intern Med. 1948;28:557–9.CrossRefGoogle Scholar
  79. Siggaard-Andersen O. The pH-log PCO2 blood acid-base nomogram revised. Scand J Clin Lab Invest. 1962;14:598–604.CrossRefGoogle Scholar
  80. Siggaard-Andersen O. The van Slyke equation. Scand J Clin Lab Invest. 1977;146:15–20.CrossRefGoogle Scholar
  81. Siggaard-Andersen O, Fogh-Andersen N. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand. 1995;107:123–8.CrossRefGoogle Scholar
  82. Storey DA. Intravenous fluid administration and controversies in acid–base. Crit Care Resusc. 1999;1:151–6.Google Scholar
  83. Traverso LW, Lee WP, Langford MJ. Fluid resuscitation after an otherwise fatal hemorrhage: 1. Crystalloids solutions. J Trauma. 1986;26:168–75.CrossRefPubMedGoogle Scholar
  84. Vincent JL, DuFaye P, Beré J, et al. Serial lactate determinations during circulatory shock. Crit Care Med. 1983;11:449–51.CrossRefPubMedGoogle Scholar
  85. Vulterini S, Colloca A, Chiappino MG, Bolignari P. L’equilibrio acido-base ed il suo studio mediante il dosaggio degli elettroliti del sangue venoso. Milan: Ediz Instr. Laboratory; 1992.Google Scholar
  86. Waters JH, Gottleib A, Schoenwald P, et al. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg. 2001;93:817–22.CrossRefPubMedGoogle Scholar
  87. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation. 1970;41:989–1001.CrossRefPubMedGoogle Scholar
  88. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–35.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wilkes NJ, Woolf R, Mutch M, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–6.CrossRefPubMedGoogle Scholar
  90. Wooten EW. Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol. 1999;86:326–34.CrossRefPubMedGoogle Scholar
  91. Worthley LIG. Acid–base balance and disorders. In: Bersten AD, Soni N, editors. Oh’s intensive care manual. 5th ed. Edinburgh: Butterworth-Heinemann; 2003.Google Scholar
  92. Zander R. Infusion fluids: why should they be balanced solutions? Eur J Hospital Pharmacy Practice. 2006;12:60–2.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Felice Eugenio Agrò
    • 1
    Email author
  • Marialuisa Vennari
    • 1
  • Maria Benedetto
    • 1
  1. 1.Postgraduate School of Anesthesia and Intensive Care, Anesthesia, Intensive Care and Pain Management DepartmentUniversity School of Medicine Campus Bio-Medico of RomeRomeItaly

Personalised recommendations