Fluid Management and Electrolyte Balance

  • Felice Eugenio AgròEmail author
  • Marialuisa Vennari
  • Maria Benedetto


Cardiac surgery is responsible for profound modification in body water distribution, electrolyte plasma concentration, and acid-base balance. Maintaining homeostasis must take into account the kind of surgery, the alterations due to anesthesia, the effects of cardiopulmonary bypass, patient’s comorbidities, and his own response to surgical stress. The ideal approach to perioperative fluid management is still debated in all clinical contest and in cardiac surgery patients in particular, since a load of fluid is generally needed because of cardiopulmonary bypass priming. The debate involves the kind of fluid to use (crystalloids vs. colloids, colloid vs. colloid, balanced vs. unbalance solutions) and the amount of fluid to administer (liberal, restrictive, goal-directed therapy). In this debate economics interests have influenced literature productions and results, leading more difficult the interpretation of many results and complicating clinical application of scientific founds in routinely practice. Electrolytes are always modified after cardiac surgery. With respect to the past, the benefit of their administration (in particular calcium) has been discussed in literature. In this chapter the basis of fluid and electrolyte management in cardiac surgery patient is explained, through understanding physiology and pathophysiology and considering with critical approach literature evidences.


Physiology of body fluids Ionic balance Sodium Potassium Calcium Magnesium Chloride Bicarbonate Osmolar balance Fluid movement through capillary membranes Basis of pathophysiology of fluid and electrolyte in the postoperative ICU setting of cardiac surgery Water distribution modification Electrolyte modifications Clinical management of fluid Which kind of fluid? Physical and chemical properties Crystalloids Classification Pharmacokinetics: distribution and duration of action Normal saline solution Ringer’s lactate and Ringer’s acetate Latest-generation crystalloids Potential risks and side effects Water distribution modification Electrolyte modifications Clotting disorders Hypertonic crystalloids Colloids Physiological properties of the main colloids Pharmacokinetics: distribution and duration of action Natural colloids: albumin (HA) Composition and concentration Pharmacokinetics: distribution, elimination, and duration of action Potential risks and side effects Synthetic colloids Dextrans Pharmacokinetics: distribution, elimination, and duration of action Potential risks and side effects Gelatins Pharmacokinetics: distribution, elimination, and duration of effect Potential risks and side effects Hydroxyethyl starches Pharmacokinetics: distribution, elimination, and duration of action Potential risks and side effects Coagulation and platelet function Kidney dysfunction Anaphylaxis Storing and itching Hypertonic colloid solutions Comparison between crystalloids and colloids Comparison between HES and other colloids Comparison between balanced and unbalanced solutions Liberal vs. restricted approach Goal-directed fluid therapy Clinical impact in cardiac surgery patients Electrolyte management Sodium Potassium Calcium Magnesium 


  1. Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63:44–51.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adams HA. Volumen und Flüssigkeitsersatz—Physiologie, Pharmakologie und klinischer Einsatz. Anästh Intensivmed. 2007;48:448–60.Google Scholar
  3. Adamson JW. New blood, old blood, or no blood? N Engl J Med. 2008;358:1295–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Agro FE, Benedetto M. Properties and composition of plasma substitutes. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.CrossRefGoogle Scholar
  5. Agro FE, Vennari M. Physiology of body fluid compartments and body fluid movements. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013a.CrossRefGoogle Scholar
  6. Agro FE, Vennari M. Clinical treatment: the right fluid in the right quantity. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013b.CrossRefGoogle Scholar
  7. Agrò FE, Fries D, Vennari M. Cardiac Surgery. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.CrossRefGoogle Scholar
  8. Agro FE, Fries D, Benedetto M. How to maintain and restore the balance: colloids. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.CrossRefGoogle Scholar
  9. Allhoff T, Lenhart FP. Severe dextran-induced anaphylactic/anaphylactoid reaction in spite of hapten prophylaxis. Infusionsther Transfusionsmed. 1993;20:301–6.PubMedPubMedCentralGoogle Scholar
  10. Allison KP, Gosling P, Jones S, et al. Randomized trial of hydroxyethyl starch versus gelatin for trauma resuscitation. J Trauma. 1999;47:1114–21.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Arieff AI, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine. 1976;55:121–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Arkilic CF, Taguchi A, Sharma N, et al. Supplemental perioperative fluid administration increases tissue oxygen pressure. Surgery. 2003;133:49–55.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Arthurson G, Granath K, Thoren L, et al. The renal excretion of LMW dextran. Acta Clin Scand. 1964;127:543–51.Google Scholar
  14. Atik M. Dextran-40 and dextran-70, a review. Arch Surg. 1967;94:664–7.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Auler JOJ, Galas F, Hajjar L, et al. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg. 2008;106:1201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Balogh Z, McKinley BA, Cocanour CS, et al. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138:633–42.CrossRefGoogle Scholar
  17. Bamboat ZM, Bordeianou L. Perioperative fluid management. Clin Colon Rectal Surg. 2009;22(1):28–33.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Baron JF. Adverse effects of colloids on renal function. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. 1st ed. Berlin: Springer; 2000.Google Scholar
  19. Barron ME, Wilkes NRJ. A systematic review of the comparative safety of colloids. Arch Surg. 2004;139:552–63.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Base EM, Standl T, Lassnigg A, et al. Efficacy and safety of hydroxyethyl starch 6% 130/0.4 in a balanced electrolyte solution (Volulyte) during cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25(3):407–14.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Belloni L, Pisano A, Natale A, et al. Assessment of fluid responsiveness parameters for off-pump coronary artery bypass surgery: a comparison among LiDCO, transesophageal echocardiography, and pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2008;22:243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bendjelid K, Suter PM, Romand JA. The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol. 2004;96:337–42.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Benes J, Cytra I, Altmann P, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: result of prospective randomized study. Crit Care. 2010;14:R118.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bennett-Guerrero E, Kahn RA, Moskowitz DM, et al. Comparison of arterial systolic pressure variation with other clinical parameters to predict the response to fluid challenges during cardiac surgery. Mt Sinai J Med. 2002;69:96–100.PubMedPubMedCentralGoogle Scholar
  25. Bernard C. Introdution à l’étude de la médecine expérimentale. Paris: J. B. Baillière et fils; 1865.Google Scholar
  26. Booth J, Philips-Bute B, McCants C, et al. Low serum magnesium level predicts major adverse cardiac events after coronary artery bypass graft surgery. Am Heart J. 2003;145:1108–13.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Boyd DR, Mansberger AR Jr. Serum water and osmolal changes in hemorrhagic shock: an experimental and clinical study. Am Surg. 1968;34:744–9.PubMedPubMedCentralGoogle Scholar
  28. Brandstrup B. Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol. 2006;20:265–83.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Brandstrup B, Tønnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238:641–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Breukers RM, de Wilde RBP, van den Berg PCM, et al. Assessing fluid responses after coronary surgery: role of mathematical coupling of global end-diastolic volume to cardiac output measured by transpulmonary thermodilution. Eur J Anaesthesiol. 2009a;26:954–60.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Breukers RM, Trof RJ, de Wilde RBP, et al. Relative value of pressures and volumes in assessing fluid responsiveness after valvular and coronary artery surgery. Eur J Cardiothorac Surg. 2009b;35:62–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brock H, Gabriel C, Bibl D, et al. Monitoring intravascular volumes for postoperative volume therapy. Eur J Anaesthesiol. 2002;19:288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol. 2005;289:H1993–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Buhre W, Buhre K, Kazmaier S, et al. Assessment of cardiac preload by indicator dilution and transesophageal echocardiography. Eur J Anaesthesiol. 2001;18:662–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Bunn F, Roberts I, Tasker R, Akpa E. Hypertonic versus isotonic crystalloid for fluid resuscitation in critically ill patients (Cochrane Review). Cochrane Database Syst Rev. 2002;3:CD002045.Google Scholar
  37. Caironi P, Langer T, Gattinoni L. Albumin in critically ill patients: the ideal colloid? Curr Opin Crit Care. 2015;21(4):302–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Campbell IT, Baxter JN, Tweedie IE, et al. IV fluids during surgery. Br J Anaesth. 1990;65:726–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Carl M, Alms A, Braun J, et al. Die intensivmedizinische Versorgung herzchirurgischer Patienten: Hämodynamisches Monitoring und Herz-Kreislauf-Therapie S3-Leitlinie der Deutschen Gesellschaft für Thorax-, Herz- und Gefäbchirurgie (DGTHG) und der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Thorac Cardiovasc Surg. 2000;55:130–48.CrossRefGoogle Scholar
  40. Cavallaro F, Sandroni C, Antonelli M. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Minerva Anestesiol. 2008;74:123–35.PubMedPubMedCentralGoogle Scholar
  41. Cervera AL, Moss G. Crystalloid distribution following haemorrhage and haemodilution: mathematical model and prediction of optimum volumes for equilibration at normovolemia. J Trauma. 1974;14:506–20.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Chan ST, Kapadia CR, Johnson AW, et al. Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses. Br J Surg. 1983;70:36–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Cheung AT, Savino JS, Weiss SJ, et al. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology. 1994;81:376–87.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Chytra I, Pradl R, Bosman R, et al. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care. 2007;11(1):R24.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dabbagh A, Rajaei S, Shamsolhrar M. The effect of intravenous magnesium sulfate on acute postoperative bleeding in elective coronary artery bypass surgery. J Perianesth Nurs. 2010;25:290–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. David J, Vivien B, Lecarpentier Y, et al. Extracellular calcium modulates the effects of protamine on rat myocardium. Anesth Analg. 2001;92:817–23.PubMedCrossRefPubMedCentralGoogle Scholar
  48. De Hert S, De Baerdemaeker L. Why hydroxyethyl starch solutions should NOT be banned from the operating room. Anaesthesiol Intensive Ther. 2014;46(5):336–41.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Dehert S, Ten Broeke P, De Mulder P, et al. Effect of calcium on left ventricular function early after cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1997;11:846–9.CrossRefGoogle Scholar
  50. DeJonge E, Levi M. Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med. 2001;29:1261–7.CrossRefGoogle Scholar
  51. Deman A, Peeters P, Sennesael J. Hydroxyethyl starch does not impair immediate renal function in kidney transplant recipient. A retrospective, multicenter analysis. Nephrol Dial Transplant. 1999;14:1517–20.PubMedCrossRefPubMedCentralGoogle Scholar
  52. DiCorte CJ, Latham P, Greilich PE, et al. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000;69:1782–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Dieterich HJ, Weissmuller T, Rosenberger P, et al. Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med. 2006;34:1775–82.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Dietrich G, Orth D, Haupt W, et al. Primary hemostasis in hemodilution-infusion solutions. Infusionstherapie. 1990;17:214–6.PubMedPubMedCentralGoogle Scholar
  55. Dongaonkar R, Stweart R, Geisller H, Laine G. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res. 2010;87:331–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dorje P, Adhikary G, Tempe DK. Avoiding iatrogenic hyperchloremic acidosis: call for a new crystalloid fluid. Anesthesiology. 2000;92:625–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Drt A, Mutter T, Ruth C, et al. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2010;1:CD007594.Google Scholar
  58. Drummond JC, Petrovitch CT. Intraoperative blood salvage: fluid replacement calculation. Anesth Analg. 2005;100:645–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Dubois MJ, Vincent JL. Colloid fluids. In: Hahn RG, Prough DS, Svensen CH, editors. Perioperative fluid therapy. 1st ed. New York: Wiley; 2007.Google Scholar
  60. Duchesne JC, Kaplan LJ, Balogh ZJ, Malbrain ML. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension. Anaesthesiol Intensive Ther. 2015;47(2):143–55.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ekery D, Davidoff R, Orlandi Q, et al. Imaging and diagnostic testing: dysfunction after coronary artery bypass grafting: a frequent finding of clinical significance not influenced by intravenous calcium. Am Heart J. 2003;145:896–902.PubMedCrossRefPubMedCentralGoogle Scholar
  62. England M, Gordon G, Salem M, et al. Magnesium administration and dysrhythmias after cardiac surgery. A placebo controlled double-blind randomized trial. JAMA. 1992;268:2395–402.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Ernest D, Belzberg AS, Dodek PM. Distribution of normal saline and 5% albumin infusions in cardiac surgical patients. Crit Care Med. 2001;29:2299–302.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Fanzca RY. Perioperative fluid and electrolyte management in cardiac surgery: a review. J Extra Corpor Technol. 2012;44:20–6.Google Scholar
  65. Feng X, Yan W, Liu X, et al. Effects of hydroxyethyl starch 130/0.4 on pulmonary capillary leakage and cytokines production and nF-kappaB activation in ClP-induced sepsis in rats. J Surg Res. 2006;135:129–36.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Fitzsimons M, Agnihotri A. Hyponatremia and cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2007;86:1883–7.Google Scholar
  67. Fleck A, Raines G, Hawker F, et al. Increased vascular permeability. Major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;1:781–3.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Franz A, Bräunlich P, Gamsjäger T, et al. The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg. 2001;92:1402–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gallandat Huet RCG, Siemons AW, Baus D, et al. A novel hydroxyethyl starch (VoluvenR) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth. 2000;47:1207–15.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Gamble J. Chemical anatomy, physiology and pathology of extracellular fluid. Cambridge: Harvard University Press; 1947.Google Scholar
  71. Gandhi SD, Weiskopf RB, Jungheinrich C, et al. Volume replacement therapy during major orthopedic surgery using Voluven® (hydroxyethyl starch 130/0.4) or hetastarch. Anesthesiology. 2007;106:1120–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Garcia L, Dejong S, Martin S, et al. Magnesium reduces free radicals in an in vivo coronary occlusion reperfusion model. J Am Coll Cardiol. 1998;32:536–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ghijselings I, Rex S. Hydroxyethyl starches in the perioperative period. A review on the efficacy and safety of starch solutions. Acta Anaesthesiol Belg. 2014;65(1):9–22.PubMedPubMedCentralGoogle Scholar
  74. Giglio MT, Marucci M, Testini M, et al. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth. 2009;103:637–46.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Goedje O, Seebauer T, Peyerl M, et al. Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest. 2000;118:775–81.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Goepfer MS, Reuter DA, Akyiol D, et al. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33:96–103.CrossRefGoogle Scholar
  77. Grathwohl KW, Bruns BJ, LeBrun CJ, et al. Does haemodilution exist? Effects of saline infusion on hematologic parameters in euvolemic subjects. South Med J. 1996;89:51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Grebe D, Sander M, von Heymann C, et al. Fluid therapy—pathophysiological principles as well as intra- and perioperative monitoring. Anasthesiol Intensivmed Notfallmed Schmerzther. 2006;41:392–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Greenfield RH, Bessen HA, Henneman PL. Effect of crystalloid infusion on hematocrit and intravascular volume in healthy, no bleeding subjects. Ann Emerg Med. 1989;18:51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Gries A, Bode C, Gross S, et al. The effect of intravenously administered magnesium on platelet function in patient after cardiac surgery. Anesth Analg. 1999;88:1231–9.CrossRefGoogle Scholar
  81. Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–106.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Habicher M, Perrino AJ, Spies CD, et al. Contemporary fluid management in cardiac anesthesia. J Cardiothorac Vasc Anesth. 2011;25(6):1141–53.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Hahn RG. Must hypervolaemia be avoided? A critique of the evidence. Anaesthesiol Intensive Ther. 2015;47(5):449–56.PubMedPubMedCentralGoogle Scholar
  84. Hahn RG, Drobin D, Stähle L. Volume kinetics of Ringer’s solution in female volunteers. Br J Anaesth. 1997;78:144–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Hauser CJ, Shoemaker WC, Turpin I, et al. Oxygen transport responses to colloids and crystalloids in critically ill surgical patients. Surg Gynecol Obstet. 1980;150:811–6.PubMedPubMedCentralGoogle Scholar
  86. Haynes GH, Havidich JE, Payne KJ. Why the Food and Drug Administration changed the warning label for hetastarch. Anesthesiology. 2004;101:560–1.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Hecth-Dolkin M, Barkan H, Tahara A, et al. Hetastarch increases the risk of bleeding complications in patients after off-pump coronary by-pass surgery. J Thorac Cardiovasc Surg. 2009;138:703–11.CrossRefGoogle Scholar
  88. Hendry EB. Osmolarity of human serum and of chemical solutions of biological importance. Clin Chem. 1961;7:156–64.Google Scholar
  89. Herzog W, Schlossberg M, MacMurdy K, et al. Timing of magnesium therapy affects experimental infarct size. Circulation. 1995;92:2622–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Heßler M, Arnemann PH, Ertmer C. To use or not to use hydroxyethyl starch in intraoperative care: are we ready to answer the ‘Gretchen question’? Curr Opin Anaesthesiol. 2015;28(3):370–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Hiltebrand LB, Pestel G, Hager H, et al. Perioperative fluid management: comparison of high, medium and low fluid volume on tissue oxygen pressure in the small bowel and colon. Eur J Anaesthesiol. 2007;24:927–33.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Hofer CK, Furrer L, Matter-Ensner S, et al. Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth. 2005a;94:748–55.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hofer CK, Müller SM, Furrer L, et al. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005b;128:848–54.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hofer CK, Senn A, Weibel L, et al. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac™ and PiCCOplus™ system. Crit Care. 2008;12:R82.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Holte K, Kehlet H. Compensatory fluid administration for preoperative dehydration: does it improve outcome? Acta Anaesthesiol Scand. 2002;46:1089–93.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Holte K, Klarskov B, Christensen DS, et al. Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized doubleblind study. Ann Surg. 2004;240:892–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Holte K, Hahn RG, Ravn L, et al. Influence of a “liberal” versus “restrictive” intraoperative fluid administration on elimination of a postoperative fluid load. Anesthesiology. 2007a;106:75–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Holte K, Foss NB, Andersen J, et al. Liberal or restrictive fluid administration in fasttrack colonic surgery: a randomized, double-blind study. Br J Anaesth. 2007b;99:500–8.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Holtfreter B, Bandt C, Kuhn SO, et al. Serum osmolality and outcome in intensive care unit patients. Acta Anaesthesiol Scand. 2006;50:970–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hu X, Weinbaum S. A new view of Starling’s hypothesis at the micro-structural level. Microvasc Res. 1999;58(3):281–304.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Hu X, Adamson RH, Liu B, Curry FE, Weinbaum S. Starling forces that oppose filtration after tissue oncotic pressure is increased. Am J Physiol Heart Circ Physiol. 2000;279(4):H1724–36.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Hüter L, Simon TP, Weinmann L, et al. Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care. 2009;13:R23.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ickx BE, Bepperling F, Melot C, et al. Plasma substitution effects of a new hydroxyethyl starch HES 130/0.4 compared with HES 200/0.5 during and after extended acute normovolaemic haemodilution. Br J Anaesth. 2003;91:196–202.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Iriz E, Kolbakir F, Akar H, et al. Comparison of hydroxyethyl starch and ringer as prime solution regarding S-100beta protein levels and informative cognitive tests in cerebral injury. Ann Thorac Surg. 2005;79:666–71.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Jacob M, Chappel D, Conzen P, et al. Blood volume is normal after overnight fasting. Acta Anaesthesiol Scand. 2008;52:522–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. James MF, Latoo MY, Mythen MG, et al. Plasma volume changes associated with two hydroxyethyl starch colloids following acute hypovolaemia in volunteers. Anaesthesia. 2004;59:738–42.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Järhult J. Osmotic fluid transfer from tissue to blood during hemorrhagic hypotension. Acta Physiol Scand. 1973;89:213–26.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Jarvela K, Koskinen M, Kaukinen S, et al. Effects of hypertonic saline (7.5%) on extracellular fluid volumes compared with normal saline (0.9%) and 6% hydroxyethyl starch after aortocoronary bypass graft surgery. J Cardiothorac Vasc Anesth. 2001;15:210–5.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Jenkins MT, Giesecke AH, Johnson ER. The postoperative patient and his fluid and electrolyte requirements. Br J Anaesth. 1975;47:143–50.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Jones SB, Whitten CW, Monk TG. Influence of crystalloid and colloid replacement solutions on hemodynamic variables during acute normovolemic hemodilution. J Clin Anesth. 2004;16:11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Jumgheinrich C, Scharpf R, Wargenau M, et al. The pharmacokinetics and tolerability of an intravenous infusion the new hydroxyethyl starch 130/04 (6% 500 ml) in mild to severe renal impairment. Anaesth Analg. 2002;95:544–51.Google Scholar
  112. Kaminski MV, Williams SD. Review of the rapid normalization of serum albumin with modified total parenteral nutrition solutions. Crit Care Med. 1990;18:327–35.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Kampmeier T, Rehberg S, Ertmer C. Evolution of fluid therapy. Best Pract Res Clin Anaesthesiol. 2014;28(3):207–16.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Kapoor PM, Kakani M, Chowdhury U, et al. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth. 2008;11:27–34.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Karanko MS, Klossner JA, Laaksonen VO. Restoration of volume by crystalloid versus colloid after coronary artery bypass: hemodynamics, lung water, oxygenation, and outcome. Crit Care Med. 1987;15:559–66.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Kastrup M, Markewitz A, Spies C, et al. Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol Scand. 2007;51:347–58.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kenney PR, Allen-Rowlands CF, Gann DS. Glucose and osmolality as predictors of injury severity. J Trauma. 1983;23:712–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Kimura T, Yasue H, Sukaino N, et al. Effects of magnesium on isolated human coronary arteries. After CABG it has been shown as a predictor of major cardiac events. Circulation. 1989;79:118–24.CrossRefGoogle Scholar
  119. Knotzer H, Filipovic M, Siegemund M, Kleinsasser A. The physiologic perspective in fluid management in vascular anesthesiology. J Cardiothorac Vasc Anesth. 2014;28(6):1604–8.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Kozek-Langenecker SA. Effects of hydroxyethyl starch solutions on hemostasis. Anesthesiology. 2005;103:654–60.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Kutschen F, Galletti P, Hahn C, et al. Alterations of insulin and glucose metabolism during cardiopulmonary bypass under normothermia. J Thorac Cardiovasc Surg. 1985;89:97–106.Google Scholar
  122. Lamke LO, Liljedahl SO. Plasma volume changes after infusion of various plasma expanders. Resuscitation. 1976;5:93–102.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Lamke L, Nilsson G, Reithner H. Water loss by evaporation from the abdominal cavity during surgery. Acta Chir Scand. 1977;143:279–84.PubMedPubMedCentralGoogle Scholar
  124. Lasks H, Standeven J, Balir O, et al. The effects of cardiopulmonary by-pass with crystalloid and colloid hemodilution on myocardial extravascular water. J Thorac Cardiovasc Surg. 1977;73:129–38.Google Scholar
  125. Laxenaire M, Charpentier C, Feldman L. Reactions anaphylactoides aux subitutes colloidaux du plasma: incidence, facteurs de risque, mecanismes. Ann Fr Anest Reanim. 1994;13:301–10.CrossRefGoogle Scholar
  126. Lees N, Hamilton M, Rhodes A. Clinical review: goal-directed therapy in high risk surgical patients. Crit Care. 2009;13:231. Scholar
  127. Lehmann G, Marx G, Forster H. Bioequivalence comparison between hydroxyethyl starch 130/0.42/6:1 and hydroxyethyl starch 130/0.4/9:1. Drugs R D. 2007;8:229–40.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Levick JR. Revision of the Starling principle. New views of tissue fluid balance. J Physiol. 2004;557:704.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ley SJ, Miller K, Skov P, et al. Crystalloid versus colloid fluid therapy after cardiac surgery. Heart Lung. 1990;19:31–40.PubMedPubMedCentralGoogle Scholar
  130. Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Semin Cardiothorac Vasc Anesth. 2014;18(3):252–9.CrossRefGoogle Scholar
  131. Lobo DN. Sir David Cuthbertson medal lecture. Fluid, electrolytes and nutrition: physiological and clinical aspects. Proc Nutr Soc. 2004;63:453–66.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Lobo DN, Stanga Z, Simpson JAD, et al. Dilution and redistribution effects of rapid 2- litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci (Lond). 2001;101:173–9.CrossRefGoogle Scholar
  133. Lobo DN, Bostock KA, Neal KR, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359:1812–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Lobo DN, Stanga Z, Aloysius MM, et al. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatin (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, threeway crossover study in healthy volunteers. Crit Care Med. 2010;38:464–70.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Lopes MR, Oliveira MA, pereira VO. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lowell JA, Schifferdecker C, Driscoll DF, et al. Postoperative fluid overload: not a benign problem. Crit Care Med. 1990;18:728–33.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Ma PL, Peng XX, Du B, et al. Sources of heterogeneity in trials reporting hydroxyethyl starch 130/0.4 or 0.42 associated excess mortality in septic patients: a systematic review and meta-regression. Chin Med J. 2015;128(17):2374–82.PubMedPubMedCentralCrossRefGoogle Scholar
  138. MacKay G, Fearon K, McConnachie A, et al. Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery. Br J Surg. 2006;93:1469–74.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Madjdpour C, Dettori N, Frascarolo P, et al. Molecular weight of hydroxyethyl starch: is there an effect on blood coagulation and pharmacokinetics? Br J Anaesth. 2005;94:569–76.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Maharaj CH, Kallam SR, Malik A, et al. Preoperative intravenous fluid therapy decreases postoperative nausea and pain in high risk patients. Anesth Analg. 2005;100:675–82.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Mahmood A, Gosling P, Vohra RK. Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatin during aortic aneurysm surgery. Br J Surg. 2007;94:427–33.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Mahmood A, Gosling P, Barclay R, et al. Splanchnic microcirculation protection by hydroxyethyl starches during abdominal aortic aneurysm surgery. Eur J Vasc Endovasc Surg. 2009;37:319–25.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Makoff DL, da Silva JA, Rosenbaum BJ, et al. Hypertonic expansion: acid-base and electrolyte changes. Am J Phys. 1970;218:1201–7.Google Scholar
  144. Maningas PA, Bellamy RF. Hypertonic sodium chloride solutions for the prehospital management of traumatic hemorrhagic shock: a possible improvement in the standard of care? Ann Emerg Med. 1986;15:1411–4.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Margarson MP, Soni N. Serum albumin: touchstone or totem? Anaesthesia. 1998;53:789–803.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Marik PE. The treatment of hypoalbuminemia in the critically ill patient. Heart Lung. 1993;22:166–70.PubMedPubMedCentralGoogle Scholar
  147. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.CrossRefPubMedGoogle Scholar
  148. Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review. Crit Care Med. 2009;37:2642–7.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Marik PE, Cecconi M, Hofer CF. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15:214.CrossRefGoogle Scholar
  150. Martin G, Bennett-Guerrero E, Wakeling H, et al. A prospective, randomized comparison of thrombelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6% hetastarch in a balanced-saline vehicle, or 6% hydroxyethyl starch in saline during major surgery. J Cardiothorac Vasc Anesth. 2002;16:441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  151. McIlroy DR, Kharasch ED. Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg. 2003;96(6):1572–7.PubMedCrossRefPubMedCentralGoogle Scholar
  152. McKendry M, McGloin H, Saberi D, et al. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329:258.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Metze D, Reimann S, Szepfalusi Z, et al. Persistent pruritus after hydroxyethyl starch infusion therapy: a result of long-term storage in cutaneous nerves. Br J Dermatol. 1997;136:553–9.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Michard F, Teboul J-L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Michard F, Alaya S, Zarka V, et al. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Mille S, Crystal E, Garfinkle K, et al. Effects of magnesium in atrial fibrillation after cardiac surgery: a meta analysis. Heart. 2005;91:618–23.CrossRefGoogle Scholar
  157. Miller RD. Miller’s anesthesia. 7th ed. London, UK: Churchill Livingstone; 2009.Google Scholar
  158. Mitra S, Khandelwal P. Are all colloids same? How to select the right colloid? Indian J Anaesth. 2009;53(5):592.PubMedPubMedCentralGoogle Scholar
  159. Moore FD, Steenburg RW, Ball MR, et al. Studies in surgical endocrinology. The urinary excretion of 17-hydroxycorticoids, and associated metabolic changes, in cases of soft tissue trauma of varying severity and in bone trauma. Ann Surg. 1955;141:145–74.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Moran M, Kapsner C. Acute renal failure associated with elevated plasma oncotic pressure. N Engl J Med. 1987;317:150–3.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Moret E, Jacob MW, Ranucci M, Schramko A. Albumin-beyond fluid replacement in cardiopulmonary bypass surgery: why, how, and when? Semin Cardiothorac Vasc Anesth. 2014;18(3):252–9.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Morissette M, Weil MH, Shubin H. Reduction in colloid osmotic pressure associated with fatal progression of cardiopulmonary failure. Crit Care Med. 1975;3:115–7.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Moyer CA. Acute temporary changes in renal function associated with major surgical procedures. Surgery. 1950;27:198–207.PubMedPubMedCentralGoogle Scholar
  164. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;7:CD007594.Google Scholar
  165. Mythen MG, Webb AR. Preoperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130(4):423–9.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Nadler SB, Hidalgo JU, Bloch T. Prediction of blood volume in normal human adults. Surgery. 1962;51:224–32.PubMedPubMedCentralGoogle Scholar
  167. Ng KFJ, Lam CCK, Chan IC. In vivo effect of haemodilution with saline on coagulation: a randomized controlled tril. Br J Anaesth. 2002;88:475–80.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Niemi TT, Suojaranta-Ylinen RT, Kukkonen SI, et al. Gelatin and hydroxyethyl starch, but not albumin, impair hemostasis after cardiac surgery. Anesth Analg. 2006;102:998–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Niemi T, Schramko A, Kuitunen A, et al. Haemodynamics and acid-base equilibrium after cardiac surgery: comparison of rapidly degradable hydroxyethyl starch solutions and albumin. Scand J Surg. 2008;97:259–65.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Nisanevich V, Felsenstein I, Almogy G, et al. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103:25–32.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Nuevo FR, Vennari M, Agro FE. How to maintain and restore fluid balance: crystalloids. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.Google Scholar
  172. Olsson J, Svense’n CH, Hahn RG. The volume kinetics of acetated Ringer’s solution during laparoscopic cholecystectomy. Anesth Analg. 2004;99:1854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Ooi JS, Ramzisham AR, Zamrin MD. Is 6% hydroxyethyl starch 130/0.4 safe in coronary artery bypass graft surgery? Asian Cardiovasc Thorac Ann. 2009;17:368–72.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Otsuki D, Fantoni D, Margarido C, et al. Hydroxyethyl starch is superior to ringer as a replacement fluid in pig model of acute normovolemic haemodilution. Br J Anaesth. 2007;98:29–37.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Palumbo D, Servillo G, D’Amato L, et al. The effects of hydroxyethyl starch solution in critically ill patients. Minerva Anestesiol. 2006;72:655–64.PubMedPubMedCentralGoogle Scholar
  176. Pearse R, Dawson D, Fawcett J, et al. Changes in central venous saturation after major surgery, and association with outcome. Crit Care. 2005a;9:R694–9.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Pearse R, Dawson D, Fawcett J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005b;9:R687–93.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Petty TL, Ashbaugh DG. The adult respiratory distress syndrome. Clinical features, factors influencing prognosis and principles of management. Chest. 1971;60(3):233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Polderman K, Girbes R. Severe electrolyte disorders following cardiac surgery. A prospective controlled observational study. Crit Care. 2004;8:459–66.CrossRefGoogle Scholar
  180. Polonen P, Ruokonen E, Hippelainen M, et al. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052–9.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Powell-Tuck J, Gosling P, Lobo DN et al. (2008) British consensus guidelines on intravenous fluid therapy for adult surgical patients. GIFTASUP. Accessed 1 April 2010.
  182. Pradeep A, Rajagopalam S, Kolli HK, et al. High volumes of intravenous fluid during cardiac surgery are associated with increased mortality. HSR Proceedings in Intensive Care and Cardiovascular. Anesthesia. 2010;2:287–96.Google Scholar
  183. Pries AR, Secomb TW, Sperandi M, Gaehtgens P. Blood flow resistance during hemodilution. Effect of plasma composition. Cardiovasc Res. 1998;37:225–35.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Rackow E, Fein AI, Leppo J. Colloid osmotic pressure as a prognostic indicator of pulmonary oedema and mortality in the critically ill. Chest. 1977;72:709–13.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Rackow EC, Falk JL, Fein IA, et al. Fluid resuscitation in circulatory shock: a comparison of the cardio-respiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med. 1983;11:839–50.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Raghunathan K, Shaw AD, Bagshaw SM. Fluids are drugs: type, dose and toxicity. Curr Opin Crit Care. 2013;19(4):290–8.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Raja SG, Akhtar S, Shahbaz Y, et al. In cardiac surgery patients does Voluven® impair coagulation less than other colloids? Interact Cardiovasc Thorac Surg. 2011;12:1022–7.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Rajnish KJ, et al. Albumin: an overview of its place in current clinical practice. J Indian An. 2004;53:592–607.Google Scholar
  189. Rasmussen KC, Secher NH, Pedersen T. Effect of perioperative crystalloid or colloid fluid therapy on hemorrhage, coagulation competence, and outcome: a systematic review and stratified meta-analysis. Medicine (Baltimore). 2016;95(31):e4498.CrossRefGoogle Scholar
  190. Ravn H, Moeldrup U, Brookes C, et al. Intravenous magnesium reduces infarct size after ischemia/reperfusion injury combined with a thrombogenic lesion in the left anterior descending artery. Arterioscler Thromb Vasc Biol. 1999;19:569–74.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Reed RK, Rubin K. Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res. 2010;87:211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Rehm M. Limited applications for hydroxyethyl starch: background and alternative concepts. Anaesthesist. 2013;62(8):644–55.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Rehm M, Haller M, Orth V, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5T albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95:849–56.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Rehm M, Zahler S, Lotsc M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100:1211–23.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Rehm R, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896–906.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Rehm M, Hulde N, Kammerer T, Meidert AS, et al. State of the art in fluid and volume therapy: a user-friendly staged concept. Anaesthesist. 2017;66(3):153–67.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Reid F, Lobo DN, Williams RN, et al. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104:17–24.PubMedPubMedCentralGoogle Scholar
  198. Reuter DA, Felbinger TW, Moerstedt K, et al. Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth. 2002a;16:191–5.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Reuter DA, Felbinger TW, Kilger E, et al. Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth. 2002b;88:124–6.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–80.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Reuter DA, Huang C, Edrich T, et al. Cardiac output monitoring using indicator dilution techniques: basic, limits and perspectives. Anesth Analg. 2010;110:799–811.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Roberts JS, Bratton SL. Colloid volume expanders. Problems, pitfalls and possibilities. Drugs. 1998;55(5):621–30.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Roche AM, James MF, Grocott MP, et al. Coagulation effects of in vitro serial haemodilution with a balanced electrolyte hetastarch solution compared with a saline-based hetastarch solution and lactated Ringer’s solution. Anaesthesia. 2002;57:950–5.PubMedCrossRefPubMedCentralGoogle Scholar
  204. Roessler M, Bode K, Bauer M. Fluid resuscitation in hemorrhage. Anaesthesist. 2014;63(10):730–44.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Rubin H, Carlson S, DeMeo M, et al. Randomized, double-blind study of intravenous human albumin in hypoalbuminemic patients receiving total parenteral nutrition. Crit Care Med. 1997;25:249–52.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Russell JA, Navickis RJ, Wilkes MM. Albumin versus crystalloid for pump priming in cardiac surgery: meta-analysis of controlled trials. J Cardiothorac Vasc Anesth. 2004;18:429–37.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Ruttmann TG, James MFM, Lombard EM, et al. Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to predilution concentration. Anaesth Intesive Care. 2001;29:489–93.Google Scholar
  208. Ruttmann TG, James MFM, Finlayson J, et al. Effects on coagulation of intravenous crystalloid or colloid in patients undergoing peripheral vascular surgery. Br J Anaesth. 2002;89:226–30.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Sakka SG, Becher L, Kozieras J, et al. Effects of changes in blood pressure and airway pressures on parameters of fluid responsiveness. Eur J Anaesthesiol. 2009;26:322–7.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Sanfelippo MJ, Suberviola PD, Geimer NF. Development of a von Willebrand-like syndrome after prolonged use of hydroxyethyl starch. Am J Clin Pathol. 1987;88:653–5.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Scharbert G, Deusch E, Kress HG, et al. Inhibition of platelet function by hydroxyethyl starch solutions in chronic pain patients undergoing peridural anesthesia. Anesth Analg. 2004;99:823–7.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Schell RM, Applegate RL, Cole DJ. Salt, starch, and water on the brain. J Neurosurg Anesthesiol. 1996;18:179–82.Google Scholar
  213. Schindler AW, Marx G. Evidence-based fluid management in the ICU. Curr Opin Anaesthesiol. 2016;29(2):158–65.PubMedCrossRefPubMedCentralGoogle Scholar
  214. Serpa Neto A, Veelo DP, Peireira VG, et al. Fluid resuscitation with hydroxyethyl starches in patients with sepsis is associated with an increased incidence of acute kidney injury and use of renal replacement therapy: a systematic review and meta-analysis of the literature. J Crit Care. 2014;29(1):185.e1–7.CrossRefGoogle Scholar
  215. Shandall A, Lowndes R, Young HL. Colonic anastomotic healing and oxygen tension. Br J Surg. 1985;72:606–9.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Sheridan WG, Lowndes RH, Young HL. Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum. 1987;30:867–71.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Shires T, Williams J, Borwn F. Acute change in extracellular fluids associated with major surgical procedures. Ann Surg. 1961;154:803–10.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Shoemaker WC, Appel PL, Kram HB, et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–86.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Sirvinskas E, Sneider E, Svagzdiene M, et al. Hypertonic hydroxyethyl starch solution for hypovolaemia correction following heart surgery. Perfusion. 2007;22:121–7.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Smetkin AA, Kirov MY, Kuzkov VV, et al. Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesthesiol Scand. 2009;53:505–14.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Solanke TF, Khwaja MS, Kadomemu EL. Plasma volume studies with four different plasma volume expanders. J Surg Res. 1971;11:140–3.PubMedCrossRefPubMedCentralGoogle Scholar
  222. Stein L, Berand J, Morisette M. Pulmonary edema during volume infusion. Circulation. 1975;52:483–9.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Stögermüller B, Stark J, Willschke H, et al. The effect of hydroxyethylstarch 200 kD on platelet function. Anesth Analg. 2000;91:823–7.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Strauss RG, Pennell BJ, Stump DC. A randomized, blinded trial comparing the hemostatic effects of pentastarch versus hetastarch. Transfusion. 2002;42:27–36.PubMedCrossRefPubMedCentralGoogle Scholar
  225. Study Investigators SAFE, Finfer S, McEvoy S, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.CrossRefGoogle Scholar
  226. Takil A, Eti Z, Irmak P, et al. Early postoperative respiratory acidosis after large intravascular volume infusion of lactated Ringer’s solution during major spine surgery. Anesth Analg. 2002;95:294–8.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Tatara T, Tashiro C. Quantitative analysis of fluid balance during abdominal surgery. Anesth Analg. 2007;104:347–54.PubMedCrossRefPubMedCentralGoogle Scholar
  228. Tian J, Lin X, Guan R, et al. The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms. Anesth Analg. 2004;98:768–74.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Tobias MD, Wambold D, Pilla MA, et al. Differential effects of serial hemodilution with hydroxyethyl starch, albumin, and 0.9% saline on whole blood coagulation. J Clin Anesth. 1998;8:366–71.CrossRefGoogle Scholar
  230. Tommasino C, Moore S, Todd MM. Cerebral effects of isovolemic hemodilution with crystalloid or colloid solutions. Crit Care Med. 1988;16:862–8.PubMedCrossRefPubMedCentralGoogle Scholar
  231. Tousignant CP, Walsh F, Mazer CD. The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg. 2000;90:351–5.PubMedPubMedCentralGoogle Scholar
  232. Traumer LD, Brazeal BA, Schmitz M, et al. Pentafraction reduces the lung lymph response after endotoxin administration in the ovine model. Circ Shock. 1992;36:93–6.Google Scholar
  233. Treib J, Baron JF, Grauer MT, et al. An international view of hydroxyethyl starches. Intensive Care Med. 1999;25:258–68.PubMedCrossRefPubMedCentralGoogle Scholar
  234. Van den Berg B, Vink H, Spaan J. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92:592–4.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Van der Linden PJ, De Hert SG, Daper A, et al. 3.5% urea-linked gelatin is as effective as 6% HES 200/0.5 for volume management min cardiac surgery patients. Can J Anaesth. 2004;51:236–41.PubMedCrossRefPubMedCentralGoogle Scholar
  236. Van der Linden PJ, De Hert SG, Deraedt D, et al. Hydroxyethyl starch 130/0.4 versus modified fluid gelatin for volume expansion in cardiac surgery patients: the effects on perioperative bleeding and transfusion needs. Anesth Analg. 2005;101:629–34.PubMedCrossRefPubMedCentralGoogle Scholar
  237. Varadhan KK, Lobo DN. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc. 2010;69:488–98.PubMedCrossRefPubMedCentralGoogle Scholar
  238. Verheij J, van Lingen A, Raijmakers PGHM, et al. Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth. 2006a;96:21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Verheij J, van Lingen A, Beishuizen A, et al. Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med. 2006b;32:1030–8.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Vermeulen H, Hofland J, Legemate DA, et al. Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial. Trials. 2009;10:50.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Vincent JL, Kellum JA, Shaw A, Mythen MG. Should hydroxyethyl starch solutions be totally banned? Crit Care. 2013;17(5):193.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Vincent JL, Dubois MJ, Navickis RJ, et al. Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg. 2003;237:319–34.PubMedPubMedCentralGoogle Scholar
  243. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry. New York: Wiley; 2001.Google Scholar
  244. Vretzakis G, Kleitsaki A, Aretha D, Karanikolas M. Management of intraoperative fluid balance and blood conservation techniques in adult cardiac surgery. Heart Surg Forum. 2011;14:E28–39.PubMedCrossRefPubMedCentralGoogle Scholar
  245. Wade CE, Kramer GC, Grady JJ, Fabian TC, Younes RN. Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery. 1997;122:609–16.PubMedCrossRefPubMedCentralGoogle Scholar
  246. Waitzinger J, Bepperling F, Pabst G, et al. Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R D. 2003;4:149–5.PubMedCrossRefPubMedCentralGoogle Scholar
  247. Watenpaugh DE, Yancy CW, Buckey JC, et al. Role of atrial natriuretic peptide in systemic responses to acute isotonic volume expansion. J Appl Physiol. 1992;73:1218–26.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Wiedermann CJ. Reporting bias in trials of volume resuscitation with hydroxyethyl starch. Wien Klin Wochenschr. 2014;126(7–8):189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  249. Wiesenack C, Prasser C, Keyl C, et al. Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2001;15:584–8.PubMedCrossRefPubMedCentralGoogle Scholar
  250. Wiesenack C, Prasser C, Rodig G, et al. Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg. 2003;96:1254–7.PubMedCrossRefPubMedCentralGoogle Scholar
  251. Wiesenack C, Fiegl C, Keyser A, et al. Continuously assessed right ventricular end diastolic volume as a marker of cardiac preload and fluid responsiveness in mechanically ventilated cardiac surgical patients. Crit Care. 2005;9:R226–33.PubMedPubMedCentralCrossRefGoogle Scholar
  252. Wilkes NJ, Woolf R, Mutch M, et al. The effect of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–6.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Williams EL, Hildebrand KL, McCormick SA, et al. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88:999–1003.PubMedPubMedCentralGoogle Scholar
  254. Wittkowski U, Spies C, Sander M, et al. Haemodynamic monitoring in the perioperative phase. Available systems, practical application and clinical data. Anaesthesist. 2009;58(764–778):780–66.Google Scholar
  255. Zaloga G, Strikland R, Butterworth J, et al. Calcium attenuates epinephrine’s betaadrenergic effects in postoperative surgery patients. Circulation. 1990;81:196–200.PubMedCrossRefPubMedCentralGoogle Scholar
  256. Zander R. Fluid Management. Melsungen: Bibliomed, Medizinische Verlagsgesellschaft mbH; 2009.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Felice Eugenio Agrò
    • 1
    Email author
  • Marialuisa Vennari
    • 1
  • Maria Benedetto
    • 1
  1. 1.Intensive Care and Pain Management DepartmentUniversity School of Medicine Campus Bio-Medico of RomeRomeItaly

Personalised recommendations