Natural Products and Their Benefits in Cancer Prevention

  • Nejib Guizani
  • Mostafa I. Waly
  • Mohammad Shafiur Rahman
  • Zaher Al-Attabi
Chapter

Abstract

The search for new sources of natural antioxidants from plant material may have beneficial therapeutic potential for those diseases associated with oxidative stress, including cancer. Natural products are rich in flavonoids, phenolic, alkaloids carotenoids, and organosulfur compounds, these bioactive components are known to combat oxidative stress-mediated diseases pathogenesis, including cancer. A novel approach for preventing cancer is chemoprevention using natural products for suppression, prevention, or reversion premalignancy before the induction of aggressive cancer. Natural products are fruits, vegetables, grains, spices, nuts, herbs, and medicinal plants. During the last few decades, it was found that cancer risk is decreased by having a diet rich in fruits, vegetables, green tea, and legumes and has led research to discover many plant constituents specially phytochemicals that might help in the protection against oxidative stress and blocking specific carcinogenic pathways.

References

  1. 1.
    Sheikh BY, Sarker MMR, Kamarudin MNA, Ismail A. Prophetic medicine as potential functional food elements in the intervention of cancer: a review. Biomed Pharmacother. 2017;95:614–48.  https://doi.org/10.1016/j.biopha.2017.08.043.CrossRefPubMedGoogle Scholar
  2. 2.
    Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, Roodenrys S, Keogh JB, Clifton PM, Williams PG, Fazio VA, Inge KE. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185(4 Suppl):S4–24.PubMedGoogle Scholar
  3. 3.
    Eoff RL, Stafford JB, Szekely J, Rizzo CJ, Egli M, Guengerich FP, Marnett LJ. Structural and functional analysis of Sulfolobus solfataricus Y-family DNA polymerase Dpo4-catalyzed bypass of the malondialdehyde-deoxyguanosine adduct. Biochemistry. 2009;48(30):7079–88.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Russnes KM, Möller E, Wilson KM, Carlsen M, Blomhoff R, Smeland S, Adami HO, Grönberg H, Mucci LA, Bälter K. Total antioxidant intake and prostate cancer in the Cancer of the Prostate in Sweden (CAPS) study. A case control study. BMC Cancer. 2016;16:438.  https://doi.org/10.1186/s12885-016-2486-8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Waly MI, Al-Rawahi AS, Al Riyami M, Al-Kindi MA, Al-Issaei HK, Farooq SA, Al-Alawi A, Rahman MS. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts. BMC Complement Altern Med. 2014a;14:60.  https://doi.org/10.1186/1472-6882-14-60.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rizwanullah M, Amin S, Mir SR, Fakhri KU, MMA R. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target. 2017;December:1–22.  https://doi.org/10.1080/1061186X.2017.1408115.CrossRefGoogle Scholar
  7. 7.
    Dunning S, Ur Rehman A, Tiebosch MH, Hannivoort RA, Haijer FW, Woudenberg J, van den Heuvel FA, Buist-Homan M, Faber KN, Moshage H. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Biochim Biophys Acta. 2013;1832(12):2027–34.  https://doi.org/10.1016/j.bbadis.2013.07.008.CrossRefPubMedGoogle Scholar
  8. 8.
    Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91 Spec No: 179-94.Google Scholar
  9. 9.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2–3):65–87.  https://doi.org/10.1016/j.tox.2011.03.001.CrossRefPubMedGoogle Scholar
  11. 11.
    He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532–53.  https://doi.org/10.1159/000485089.CrossRefPubMedGoogle Scholar
  12. 12.
    Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett. 2018;413:122–34.  https://doi.org/10.1016/j.canlet.2017.11.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Shu L, Cheung KL, Khor TO, Chen C, Kong AN. Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev. 2010;29(3):483–502.  https://doi.org/10.1007/s10555-010-9239-y.CrossRefPubMedGoogle Scholar
  14. 14.
    Thakur VS, Deb G, Babcook MA, Gupta S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J. 2014;16(1):151–63.  https://doi.org/10.1208/s12248-013-9548-5.CrossRefPubMedGoogle Scholar
  15. 15.
    Shankar E, Kanwal R, Candamo M, Gupta S. Dietary phytochemicals as epigenetic modifiers in cancer: promise and challenges. Semin Cancer Biol. 2016 Oct;40–41:82–99.  https://doi.org/10.1016/j.semcancer.2016.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shukla S, Meeran SM, Katiyar SK. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett. 2014;355(1):9–17.  https://doi.org/10.1016/j.canlet.2014.09.017.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tan AC, Konczak I, Sze DM, Ramzan I. Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer. 2011;63(4):495–505.  https://doi.org/10.1080/01635581.2011.538953.CrossRefPubMedGoogle Scholar
  18. 18.
    Surh YJ, Kundu JK, Na HK, Lee JS. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr. 2005;135(12 Suppl):2993S–3001S.CrossRefPubMedGoogle Scholar
  19. 19.
    Surh YJ. NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr. 2008;17(Suppl 1):269–72.PubMedGoogle Scholar
  20. 20.
    Xing C, Johnson TE, Limburg PJ. Diets, phytochemicals, and chemoprevention of tumorigenesis. J Diet Suppl. 2008;5(2):95–105.  https://doi.org/10.1080/19390210802332877.CrossRefPubMedGoogle Scholar
  21. 21.
    Saunders FR, Wallace HM. On the natural chemoprevention of cancer. Plant Physiol Biochem. 2010;48(7):621–6.  https://doi.org/10.1016/j.plaphy.2010.03.001.CrossRefPubMedGoogle Scholar
  22. 22.
    Nishino H, Satomi Y, Tokuda H, Masuda M. Cancer control by phytochemicals. Curr Pharm Des. 2007;13(33):3394–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Priyadarsini RV, Nagini S. Cancer chemoprevention by dietary phytochemicals: promises and pitfalls. Curr Pharm Biotechnol. 2012;13(1):125–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Ksiksi T, Hamza AA. Antioxidant, lipoxygenase and histone deacetylase inhibitory activities of Acridocarbus orientalis from Al Ain and Oman. Molecules. 2012;17(11):12521–32.  https://doi.org/10.3390/molecules171112521.CrossRefPubMedGoogle Scholar
  25. 25.
    Hussain J, Ali L, Khan AL, Rehman NU, Jabeen F, Kim JS, Al-Harrasi A. Isolation and bioactivities of the flavonoids morin and morin-3-O-β-D-glucopyranoside from Acridocarpus orientalis—a wild Arabian medicinal plant. Molecules. 2014;19(11):17763–72.  https://doi.org/10.3390/molecules191117763.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang HC, Chu YL, Hsieh SC, Sheen LY. Diallyl trisulfide inhibits cell migration and invasion of human melanoma a375 cells via inhibiting integrin/facal adhesion kinase pathway. Environ Toxicol. 2017a;32(11):2352–9.  https://doi.org/10.1002/tox.22445.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang Y, Li J, Guo J, Wang Q, Zhu S, Gao S, Yang C, Wei M, Pan X, Zhu W, Ding D, Gao R, Zhang W, Wang J, Zang L. Cytotoxic and antitumor effects of Curzerene from Curcuma longa. Planta Med. 2017b;83(1–02):23–9.  https://doi.org/10.1055/s-0042-107083.PubMedGoogle Scholar
  28. 28.
    Wen SY, Tsai CY, Pai PY, Chen YW, Yang YC, Aneja R, Huang CY, Kuo WW. Diallyl trisulfide suppresses doxorubicin-induced cardiomyocyte apoptosis by inhibiting MAPK/NF-κB signaling through attenuation of ROS generation. Environ Toxicol. 2018;33(1):93–103.  https://doi.org/10.1002/tox.22500.CrossRefPubMedGoogle Scholar
  29. 29.
    Waheed A, Barker J, Barton SJ, Khan GM, Najm-Us-Saqib Q, Hussain M, Ahmed S, Owen C, Carew MA. Novel acylated steroidal glycosides from Caralluma tuberculata induce caspase-dependent apoptosis in cancer cells. J Ethnopharmacol. 2011;137(3):1189–96.  https://doi.org/10.1016/j.jep.2011.07.049.CrossRefPubMedGoogle Scholar
  30. 30.
    Abdallah HM, Osman AM, Almehdar H, Abdel-Sattar E. Acylated pregnane glycosides from Caralluma quadrangula. Phytochemistry. 2013;88:54–60.  https://doi.org/10.1016/j.phytochem.2012.12.005.CrossRefPubMedGoogle Scholar
  31. 31.
    Al-Massarani SM, Bertrand S, Nievergelt A, El-Shafae AM, Al-Howiriny TA, Al-Musayeib NM, Cuendet M, Acylated WJL. pregnane glycosides from Caralluma sinaica. Phytochemistry. 2012;79:129–40.  https://doi.org/10.1016/j.phytochem.2012.04.003.CrossRefPubMedGoogle Scholar
  32. 32.
    Siddique S, Nawaz S, Muhammad F, Akhtar B, Aslam B. Phytochemical screening and in-vitro evaluation of pharmacological activities of peels of Musa sapientum and Carica papaya fruit. Nat Prod Res. 2017:1–4.  https://doi.org/10.1080/14786419.2017.1342089.
  33. 33.
    Rivera-Pastrana DM, Gardea AA, Yahia EM, Martínez-Téllez MA, González-Aguilar GA. Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit. J Food Sci Technol. 2014a;51(12):3821–9.  https://doi.org/10.1007/s13197-013-0942-x.CrossRefPubMedGoogle Scholar
  34. 34.
    Oboh G, Olabiyi AA, Akinyemi AJ. Inhibitory effect of aqueous extract of different parts of unripe pawpaw (Carica papaya) fruit on Fe2+-induced oxidative stress in rat pancreas in vitro. Pharm Biol. 2013a;51(9):1165–74.  https://doi.org/10.3109/13880209.2013.782321.CrossRefPubMedGoogle Scholar
  35. 35.
    Murray-Stewart T, Casero RA. Regulation of polyamine metabolism by curcumin for cancer prevention and therapy. Med Sci (Basel). 2017;5(4).  https://doi.org/10.3390/medsci5040038.
  36. 36.
    Lopes-Rodrigues V, Oliveira A, Correia-da-Silva M, Pinto M, Lima RT, Sousa E, Vasconcelos MH. A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells. Bioorg Med Chem. 2017;25(2):581–96.  https://doi.org/10.1016/j.bmc.2016.11.023.CrossRefPubMedGoogle Scholar
  37. 37.
    Cao S, Brodie P, Callmander M, Randrianaivo R, Razafitsalama J, Rakotobe E, Rasamison VE, TenDyke K, Shen Y, Suh EM, Kingston DG. Antiproliferative triterpenoid saponins of Dodonaea viscosa from the Madagascar dry forest. J Nat Prod. 2009;72(9):1705–7.  https://doi.org/10.1021/np900293x.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18(1).  https://doi.org/10.3390/ijms18010096.
  39. 39.
    Eissa TF, González-Burgos E, Carretero ME, Gómez-Serranillos MP. Biological activity of HPLC-characterized ethanol extract from the aerial parts of Haplophyllum tuberculatum. Pharm Biol. 2014;52(2):151–6.  https://doi.org/10.3109/13880209.2013.819517.CrossRefPubMedGoogle Scholar
  40. 40.
    Kuete V, Wiench B, Alsaid MS, Alyahya MA, Fankam AG, Shahat AA, Efferth T. Cytotoxicity, mode of action and antibacterial activities of selected Saudi Arabian medicinal plants. BMC Complement Altern Med. 2013;13:354.  https://doi.org/10.1186/1472-6882-13-354.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ali MM, Borai IH, Ghanem HM, Abdel-Halim AH, Mousa FM. The prophylactic and therapeutic effects of Momordica charantia methanol extract through controlling different hallmarks of the hepatocarcinogenesis. Biomed Pharmacother. 2017;98:491–8.  https://doi.org/10.1016/j.biopha.2017.12.096.CrossRefPubMedGoogle Scholar
  42. 42.
    Jia S, Shen M, Zhang F, Xie J. Recent advances in Momordica charantia: functional components and biological activities. Int J Mol Sci. 2017;18(12).  https://doi.org/10.3390/ijms18122555.
  43. 43.
    Vergara-Jimenez M, Almatrafi MM, Fernandez ML. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants (Basel). 2017;6(4).  https://doi.org/10.3390/antiox6040091.
  44. 44.
    Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;89:1067–77.  https://doi.org/10.1016/j.biopha.2017.02.101.CrossRefPubMedGoogle Scholar
  45. 45.
    Wright RJ, Lee KS, Hyacinth HI, Hibbert JM, Reid ME, Wheatley AO, Asemota HN. An investigation of the antioxidant capacity in extracts from Moringa oleifera plants grown in Jamaica. Plants (Basel). 2017;6(4).  https://doi.org/10.3390/plants6040048.
  46. 46.
    Safaeian L, Asghari G, Javanmard SH, Heidarinejad A. The effect of hydroalcoholic extract from the leaves of Moringa peregrina (Forssk.) Fiori. on blood pressure and oxidative status in dexamethasone-induced hypertensive rats. Adv Biomed Res. 2015;4:101.  https://doi.org/10.4103/2277-9175.156681.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Al-Dabbas MM. Antioxidant activity of different extracts from the aerial part of Moringa peregrina (Forssk.) Fiori, from Jordan. Pak J Pharm Sci. 2017;30(6):2151–7.PubMedGoogle Scholar
  48. 48.
    Dehshahri S, Wink M, Afsharypuor S, Asghari G, Mohagheghzadeh A. Antioxidant activity of methanolic leaf extract of Moringa peregrina (Forssk.) Fiori. Res Pharm Sci. 2012;7(2):111–8.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Salahuddin H, Mansoor Q, Batool R, Farooqi AA, Mahmood T, Ismail M. Anticancer activity of cynodon dactylon and oxalis corniculata on Hep2 cell line. Cell Mol Biol (Noisy-le-Grand). 2016;62(5):60–3.Google Scholar
  50. 50.
    Gao Y, Huang R, Gong Y, Park HS, Wen Q, Almosnid NM, Chippada-Venkata UD, Hosain NA, Vick E, Farone A, Altman E. The antidiabetic compound 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione, isolated from Averrhoa carambola L., demonstrates significant antitumor potential against human breast cancer cells. Oncotarget. 2015;6(27):24304–19.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Saghir SA, Sadikun A, Al-Suede FS, Majid AM, Murugaiyah V. Antihyperlipidemic, antioxidant and cytotoxic activities of methanolic and aqueous extracts of different parts of star fruit. Curr Pharm Biotechnol. 2016;17(10):915–25.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang J, Miao D, Zhu WF, Xu J, Liu WY, Kitdamrongtham W, Manosroi J, Abe M, Akihisa T, Feng F. Biological activities of phenolics from the fruits of Phyllanthus emblica L. (Euphorbiaceae). Chem Biodivers. 2017;14(12).  https://doi.org/10.1002/cbdv.201700404.
  53. 53.
    Guo XH, Ni J, Xue JL, Wang X. Phyllanthus emblica Linn. fruit extract potentiates the anticancer efficacy of mitomycin C and cisplatin and reduces their genotoxicity to normal cells in vitro. J Zhejiang Univ Sci B. 2017;18(12):1031–45.  https://doi.org/10.1631/jzus.B1600542.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhao T, Sun Q, Marques M, Witcher M. Anticancer properties of Phyllanthus emblica (Indian Gooseberry). Oxidative Med Cell Longev. 2015;2015:950890.  https://doi.org/10.1155/2015/950890.Google Scholar
  55. 55.
    Nile SH, Nile AS, Keum YS. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech. 2017;7(1):76.  https://doi.org/10.1007/s13205-017-0706-9.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhao R, Zhang T, Ma B, Li X. Antitumor activity of Portulaca oleracea L. polysaccharide on HeLa cells through inducing TLR4/NF-κB signaling. Nutr Cancer. 2017;69(1):131–9.  https://doi.org/10.1080/01635581.2017.1248294.CrossRefPubMedGoogle Scholar
  57. 57.
    Jin H, Chen L, Wang S, Chao D. Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the notch signal transduction pathway. Tumour Biol. 2017;39(7):1010428317708699.  https://doi.org/10.1177/1010428317708699.PubMedGoogle Scholar
  58. 58.
    Jinu U, Gomathi M, Saiqa I, Geetha N, Benelli G, Venkatachalam P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb Pathog. 2017;105:86–95.  https://doi.org/10.1016/j.micpath.2017.02.019.CrossRefPubMedGoogle Scholar
  59. 59.
    Robertson S, Narayanan N, Raj Kapoor B. Antitumour activity of Prosopis cineraria (L.) Druce against Ehrlich ascites carcinoma-induced mice. Nat Prod Res. 2011;25(8):857–62.  https://doi.org/10.1080/14786419.2010.536159.CrossRefPubMedGoogle Scholar
  60. 60.
    Waly MI, Ali A, Guizani N, Al-Rawahi AS, Farooq SA, Rahman MS. Pomegranate (Punica granatum) peel extract efficacy as a dietary antioxidant against azoxymethane-induced colon cancer in rat. Asian Pac J Cancer Prev. 2012;13(8):4051–5.CrossRefPubMedGoogle Scholar
  61. 61.
    George BP, Abrahamse H, Hemmaragala NM. Anticancer effects elicited by combination of Rubus extract with phthalocyanine photosensitiser on MCF-7 human breast cancer cells. Photodiagn Photodyn Ther. 2017;19:266–73.  https://doi.org/10.1016/j.pdpdt.2017.06.014.CrossRefGoogle Scholar
  62. 62.
    Grochowski DM, Paduch R, Wiater A, Dudek A, Pleszczyńska M, Tomczykowa M, Granica S, Polak P, Tomczyk M. In vitro antiproliferative and antioxidant effects of extracts from Rubus caesius leaves and their quality evaluation. Evid Based Complement Alternat Med. 2016;2016:5698685.  https://doi.org/10.1155/2016/5698685.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kula M, Krauze-Baranowska M. Rubus occidentalis: the black raspberry its potential in the prevention of cancer. Nutr Cancer. 2016;68(1):18–28.  https://doi.org/10.1080/01635581.2016.1115095.CrossRefPubMedGoogle Scholar
  64. 64.
    Kaume L, Howard LR, Devareddy L. The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. J Agric Food Chem. 2012;60(23):5716–27.  https://doi.org/10.1021/jf203318p.CrossRefPubMedGoogle Scholar
  65. 65.
    Shah SM, Sadiq A, Shah SM, Khan S. Extraction of saponins and toxicological profile of Teucrium stocksianum boiss extracts collected from District Swat, Pakistan. Biol Res. 2014;47:65.  https://doi.org/10.1186/0717-6287-47-65.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shah SM, Shah SM. Phytochemicals, antioxidant, antinociceptive and anti-inflammatory potential of the aqueous extract of Teucrium stocksianum bioss. BMC Complement Altern Med. 2015;15:351.  https://doi.org/10.1186/s12906-015-0872-4.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shah SM, Ullah F, Shah SM, Zahoor M, Sadiq A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium Stocksianum bioss collected from the North West of Pakistan. BMC Complement Altern Med. 2012;12:244.  https://doi.org/10.1186/1472-6882-12-244.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dróżdż P, Šėžienė V, Pyrzynska K. Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods Hum Nutr. 2017;72(4):360–4.  https://doi.org/10.1007/s11130-017-0640-3.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Alhosin M, León-González AJ, Dandache I, Lelay A, Rashid SK, Kevers C, Pincemail J, Fornecker LM, Mauvieux L, Herbrecht R, Schini-Kerth VB. Bilberry extract (Antho 50) selectively induces redox-sensitive caspase 3-related apoptosis in chronic lymphocytic leukemia cells by targeting the Bcl-2/Bad pathway. Sci Rep. 2015;5:8996.  https://doi.org/10.1038/srep08996.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Esselen M, Fritz J, Hutter M, Teller N, Baechler S, Boettler U, Marczylo TH, Gescher AJ, Marko D. Anthocyanin-rich extracts suppress the DNA-damaging effects of topoisomerase poisons in human colon cancer cells. Mol Nutr Food Res. 2011;55(Suppl 1):S143–53.  https://doi.org/10.1002/mnfr.201000315.CrossRefPubMedGoogle Scholar
  71. 71.
    Hara S, Morita R, Ogawa T, Segawa R, Takimoto N, Suzuki K, Hamadate N, Hayashi SM, Odachi A, Ogiwara I, Shibusawa S, Yoshida T, Shibutani M. Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model. Exp Toxicol Pathol. 2014;66(5–6):225–34.  https://doi.org/10.1016/j.etp.2014.02.002.CrossRefPubMedGoogle Scholar
  72. 72.
    Ajith TA, Hema U, Aswathi S. Zingiber officinale Roscoe ameliorates anticancer antibiotic doxorubicin-induced acute cardiotoxicity in rat. J Exp Ther Oncol. 2016;11(3):171–5.PubMedGoogle Scholar
  73. 73.
    Usha T, Pradhan S, Goyal AK, Dhivya S, Kumar HPP, Singh MK, Joshi N, Basistha BC, Murthy KRS, Selvaraj S, Middha SK. Molecular simulation-based combinatorial modeling and antioxidant activities of Zingiberaceae family rhizomes. Pharmacogn Mag. 2017;13(Suppl 3):S715–22.  https://doi.org/10.4103/pm.pm_82_17.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Guizani N, Waly MI, Singh V, Rahman MS. Nabag (Zizyphus spina-christi) extract prevents aberrant crypt foci development in colons of azoxymethane-treated rats by abrogating oxidative stress and inducing apoptosis. Asian Pac J Cancer Prev. 2013;14(9):5031–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Farmani F, Moein M, Amanzadeh A, Kandelous HM, Ehsanpour Z, Salimi M. Antiproliferative evaluation and apoptosis induction in MCF- 7 cells by Ziziphus spina christi leaf extracts. Asian Pac J Cancer Prev. 2016;17(1):315–21.CrossRefPubMedGoogle Scholar
  76. 76.
    Jafarian A, Zolfaghari B, Shirani K. Cytotoxicity of different extracts of arial parts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells. Adv Biomed Res. 2014;3:38.  https://doi.org/10.4103/2277-9175.125727.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nejib Guizani
    • 1
  • Mostafa I. Waly
    • 1
  • Mohammad Shafiur Rahman
    • 1
  • Zaher Al-Attabi
    • 1
  1. 1.Department of Food Science and NutritionCollege of Agricultural and Marine Sciences, Sultan Qaboos UniversityMuscatOman

Personalised recommendations