Skip to main content

Cholangiocarcinoma: Etiology, Pathogenesis, Diagnosis, and Management

  • Chapter
  • First Online:
Bioactive Components, Diet and Medical Treatment in Cancer Prevention

Abstract

Cholangiocarcinoma (CCA) is leading a neoplasm melanoma of the biliary duct system accounting for 3% of gastrointestinal tumors [1]. It is the subordinate most extensive primary hepatic malignancy, representing 10–25% of primary hepatic malignancies worldwide [2]. CCA infrequently occurs earlier than the age of 40; the typical age at presentation is the seventh decade of life. Men have a higher incidence of CCA than women with ratios of 1:1.2–1.5. The incidence of CCA varies significantly by geographic area secondary to variations in risk factors. CCA is deadly due to its ability to recur, metastasize, late diagnosis, and drug-refractory nature. While the incidence of ICC is rising, the occurrence of ECC is trending down suggesting that different risk factors may be involved. The prognosis of CCA is poor; therefore, the mortality and prevalence rates are parallel. Even though there are recognized risk factors for the development of CCA, most patients do not have an identifiable risk aside from age [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gatto M, Bragazzi MC, Semeraro R, Napoli C, Gentile R, Torrice A, et al. Cholangiocarcinoma: update and future perspectives. Dig Liver Dis. 2010;42(4):253–60.

    Article  CAS  PubMed  Google Scholar 

  2. Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol. 2008;24(3):349–56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis. 2008;12(1):131–50.

    Article  PubMed  Google Scholar 

  4. Khan SA, Thomas HC, Davidson BR, Taylor- Robinson SD. Cholangiocarcinoma. Lancet. 2005;366:1303–14.

    Article  PubMed  Google Scholar 

  5. Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology. 2005;128(6):1655–67.

    Article  PubMed  Google Scholar 

  6. Fava G, Marzioni M, Benedetti A, et al. Molecular pathology of biliary tract cancers. Cancer Lett. 2007;250(2):155–67.

    Article  CAS  PubMed  Google Scholar 

  7. Sandhu DS, Shire AM, Roberts LR. Epigenetic DNA hypermethylation in cholangiocarcinoma: potential roles in pathogenesis, diagnosis and identification of treatment targets. Liver Int. 2008;28(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  8. Lim JH, Park CK. Pathology of cholangiocarcinoma. Abdom Imaging. 2004;29:540–7.

    CAS  PubMed  Google Scholar 

  9. Khan SA, Emadossadat S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J Hepatol. 2012;56:848–54.

    Article  PubMed  Google Scholar 

  10. Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 2: molecular pathology and treatment. J Gastroenterol Hepatol. 2002;17:1056–63.

    Article  CAS  PubMed  Google Scholar 

  11. Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology. 2004;39:732–8.

    Article  CAS  PubMed  Google Scholar 

  12. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54(1):173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LaRusso NF, Shneider BL, Black D, Gores GJ, James SP, Doo E, Hoofnagle JH. Primary sclerosing cholangitis: summary of a workshop. Hepatology. 2006;44(3):746–64.

    Article  PubMed  Google Scholar 

  14. Claessen MM, Vleggaar FP, Tytgat KM, Siersema PD, van Buuren HR. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol. 2009;50(1):158–64.

    Article  PubMed  Google Scholar 

  15. Söreide K, Körner H, Havnen J, Söreide JA. Bile duct cysts in adults. Br J Surg. 2004;91(12):1538–48.

    Article  PubMed  Google Scholar 

  16. Hughes NR, Pairojkul C, Royce SG, Clouston A, Bhathal PS. Liver fluke-associated and sporadic cholangiocarcinoma: an immunohistochemical study of bile duct, peribiliary gland and tumour cell phenotypes. J Clin Pathol. 2006;59:1073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Card TR, Solaymani-Dodaran M, West J. Incidence and mortality of primary sclerosing cholangitis in the UK: a population-based cohort study. J Hepatol. 2008;48(6):939–44.

    Article  PubMed  Google Scholar 

  18. Lindkvist B, Benitod V, Gullberg B, Bjornsson E. Incidence and prevalence of primary sclerosing cholangitis in a defined adult population in Sweden. Hepatology. 2010;52(2):571–7.

    Article  PubMed  Google Scholar 

  19. Melum E, Karlsen TH, Schrumpf E, Bergquist A, Thorsby E, Boberg KM, et al. Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology. 2008;47:90–6.

    Article  CAS  PubMed  Google Scholar 

  20. Buckles DC, Lindor KD, Larusso NF, Petrovic LM, Gores GJ. In primary sclerosing cholangitis, gallbladder polyps are frequently malignant. Am J Gastroenterol. 2002;97:1138–42.

    Article  PubMed  Google Scholar 

  21. Lewis JT, Talwalkar JA, Rosen CB, Smyrk TC, Abraham SC. Prevalence and risk factors for gallbladder neoplasia in patients with primary sclerosing cholangitis: evidence for a metaplasiadysplasia-carcinoma sequence. Am J Surg Pathol. 2007;31:907–13.

    Article  PubMed  Google Scholar 

  22. Sibulesky L, Nguyen J, Patel T. Preneoplastic conditions underlying bile duct cancer. Langenbeck's Arch Surg. 2012;397:861–7.

    Article  Google Scholar 

  23. Sithithaworn P, Yongvanit P, Duenngai K, Kiatsopit N, Pairojkul C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2014;21:301–8.

    Article  PubMed  Google Scholar 

  24. Sripa B, Mairiang E, Thinkhamrop B, Laha T, Kaewkes S, Sithithaworn P, et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates with elevated levels of interleukin-6. Hepatology. 2009;50:1273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yongvanit P, Pinlaor S, Loilome W. Risk biomarkers for assessment and chemoprevention of liver fluke-associated cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2014;21:309–15.

    Article  PubMed  Google Scholar 

  26. Beltrán MA. Pancreaticobiliary reflux in patients with a normal pancreaticobiliary junction: pathologic implications. World J Gastroenterol. 2011;17:953–62.

    PubMed  PubMed Central  Google Scholar 

  27. Lee TY, Lee SS, Jung SW, Jeon SH, Yun SC, Oh HC, et al. Hepatitis B virus infection and intrahepatic cholangiocarcinoma in Korea: a case-control study. Am J Gastroenterol. 2008;103(7):1716–20.

    Article  PubMed  Google Scholar 

  28. Welzel TM, Graubard BI, El-Serag HB, Shaib YH, Hsing AW, Davila JA, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based casecontrol study. Clin Gastroenterol Hepatol. 2007;5(10):1221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumagai S, Kurumatani N, Arimoto A, Ichihara G. Cholangiocarcinoma among offset colour proof-printing workers exposed to 1,2-dichloropropane and/or dichloromethane. Occup Environ Med. 2013;70:508–10.

    Article  CAS  PubMed  Google Scholar 

  30. Kubo S, Nakanuma Y, Takemura S, Sakata C, Urata Y, Nozawa A, et al. Case series of 17 patients with cholangiocarcinoma among young adult workers of a printing company in Japan. J Hepatobiliary Pancreat Sci. 2014;21:479–88.

    Article  PubMed  Google Scholar 

  31. Jang S, Chun SM, Hong SM, Sung CO, Park H, Kang HJ, et al. High throughput molecular profiling reveals differential mutation patterns in intrahepatic cholangiocarcinomas arising in chronic advanced liver diseases. Mod Pathol. 2014;27:731–9.

    Article  CAS  PubMed  Google Scholar 

  32. Robertson S, Hyder O, Dodson R, Nayar SK, Poling J, Beierl K, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum Pathol. 2013;44:2768–73.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer. 2013;119:1669–74.

    Article  CAS  PubMed  Google Scholar 

  34. Al-Bahrani R, Abuetabh Y, Zeitouni N, Sergi C. Cholangiocarcinoma: risk factors, environmental influences and oncogenesis. Ann Clin Lab Sci. 2013;43:195–210.

    CAS  PubMed  Google Scholar 

  35. Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology. 2005;128:2054–65.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng T, Hong X, Wang J, Pie T, Liang Y, Yin D, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology. 2014;59:935–46.

    Article  CAS  PubMed  Google Scholar 

  37. Isomoto H, Mott JL, Kobayashi S, Warneburg NW, Bronk SF, Haan S, et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology. 2007;132:384–96.

    Article  CAS  PubMed  Google Scholar 

  38. Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res. 2006;66:10517–24.

    Article  CAS  PubMed  Google Scholar 

  39. Nomoto K, Tsuneyama K, Cheng C, Takahashi H, Hori R, Murai Y, et al. Intrahepatic cholangiocarcinoma arising in cirrhotic liver frequently expressed p63-positive basal/stem-cell phenotype. Pathol Res Pract. 2006;202:71–6.

    Article  CAS  PubMed  Google Scholar 

  40. Jaiswal M, LaRusso NF, Gores GJ. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol. 2001;281:G626–34.

    Article  CAS  PubMed  Google Scholar 

  41. Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000;60:184–90.

    CAS  PubMed  Google Scholar 

  42. Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res. 2001;61:6388–93.

    CAS  PubMed  Google Scholar 

  43. Z’Graggen K, Rivera JA, Compton CC, Pins M, Werner J, Fernandez-del Castillo C, et al. Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg. 1997;226:491–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boberg KM, Schrumpf E, Bergquist A, Broome U, Pares A, Remotti H, et al. Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. J Hepatol. 2000;32:374–80.

    Article  CAS  PubMed  Google Scholar 

  45. Taniai M, Higuchi H, Burgart LJ, Gores GJ. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology. 2002;123:1090–8.

    Article  CAS  PubMed  Google Scholar 

  46. Olnes MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology. 2004;66:167–79.

    Article  PubMed  Google Scholar 

  47. Chen CY, Shiesh SC, Tsao HC, Lin XZ. The assessment of biliary CA 125, CA 19-9 and CEA in diagnosing cholangiocarcinoma—the influence of sampling time and hepatolithiasis. Hepato-Gastroenterology. 2002;49:616–20.

    PubMed  Google Scholar 

  48. Nehls O, Gregor M, Klump B. Serum and bile markers for cholangiocarcinoma. Semin Liver Dis. 2004;24:139–54.

    Article  CAS  PubMed  Google Scholar 

  49. Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci. 2005;50:1734–40.

    Article  CAS  PubMed  Google Scholar 

  50. Akdogan M, Sasmaz N, Kayhan B, Biyikoglu I, Disibeyaz S, Sahin B. Extraordinarily elevated CA19-9 in benign conditions: a case report and review of the literature. Tumori. 2001;87:337–9.

    CAS  PubMed  Google Scholar 

  51. Foley WD, Quiroz FA. The role of sonography in imaging of the biliary tract. Ultrasound Q. 2007;23:123–35.

    Article  PubMed  Google Scholar 

  52. Gores GJ. Early detection and treatment of cholangiocarcinoma. Liver Transpl. 2000;6:S30–4.

    Article  CAS  PubMed  Google Scholar 

  53. Braga HJ, Imam K, Bluemke DA. MR imaging of intrahepatic cholangiocarcinoma: use of ferumoxides for lesion localization and extension. AJR Am J Roentgenol. 2001;177:111–4.

    Article  CAS  PubMed  Google Scholar 

  54. Gleeson FC, Rajan E, Levy MJ, Clain JE, Topazian MD, Harewood GC, et al. EUS-guided FNA of regional lymph nodes in patients with unresectable hilar cholangiocarcinoma. Gastrointest Endosc. 2008;67:438–43.

    Article  PubMed  Google Scholar 

  55. Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S, Jochum W, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45:43–50.

    Article  PubMed  Google Scholar 

  56. Fritscher-Ravens A, Bohuslavizki KH, Broering DC, Jenicke L, Schafer H, Buchert R, et al. FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun. 2001;22:1277–85.

    Article  CAS  PubMed  Google Scholar 

  57. Na-Bangchang K, Karbwang J. Traditional herbal medicine for the control of tropical diseases. Trop Med Health. 2014;42(2):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pratap, P., Raza, S.T., Pratap, S. (2018). Cholangiocarcinoma: Etiology, Pathogenesis, Diagnosis, and Management. In: Waly, M., Rahman, M. (eds) Bioactive Components, Diet and Medical Treatment in Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-75693-6_16

Download citation

Publish with us

Policies and ethics