Advertisement

Cholangiocarcinoma: Etiology, Pathogenesis, Diagnosis, and Management

  • Pushpendra Pratap
  • Syed Tasleem Raza
  • Sanju Pratap
Chapter

Abstract

Cholangiocarcinoma (CCA) is leading a neoplasm melanoma of the biliary duct system accounting for 3% of gastrointestinal tumors [1]. It is the subordinate most extensive primary hepatic malignancy, representing 10–25% of primary hepatic malignancies worldwide [2]. CCA infrequently occurs earlier than the age of 40; the typical age at presentation is the seventh decade of life. Men have a higher incidence of CCA than women with ratios of 1:1.2–1.5. The incidence of CCA varies significantly by geographic area secondary to variations in risk factors. CCA is deadly due to its ability to recur, metastasize, late diagnosis, and drug-refractory nature. While the incidence of ICC is rising, the occurrence of ECC is trending down suggesting that different risk factors may be involved. The prognosis of CCA is poor; therefore, the mortality and prevalence rates are parallel. Even though there are recognized risk factors for the development of CCA, most patients do not have an identifiable risk aside from age [3].

References

  1. 1.
    Gatto M, Bragazzi MC, Semeraro R, Napoli C, Gentile R, Torrice A, et al. Cholangiocarcinoma: update and future perspectives. Dig Liver Dis. 2010;42(4):253–60.CrossRefPubMedGoogle Scholar
  2. 2.
    Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol. 2008;24(3):349–56.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis. 2008;12(1):131–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Khan SA, Thomas HC, Davidson BR, Taylor- Robinson SD. Cholangiocarcinoma. Lancet. 2005;366:1303–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology. 2005;128(6):1655–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Fava G, Marzioni M, Benedetti A, et al. Molecular pathology of biliary tract cancers. Cancer Lett. 2007;250(2):155–67.CrossRefPubMedGoogle Scholar
  7. 7.
    Sandhu DS, Shire AM, Roberts LR. Epigenetic DNA hypermethylation in cholangiocarcinoma: potential roles in pathogenesis, diagnosis and identification of treatment targets. Liver Int. 2008;28(1):12–27.CrossRefPubMedGoogle Scholar
  8. 8.
    Lim JH, Park CK. Pathology of cholangiocarcinoma. Abdom Imaging. 2004;29:540–7.PubMedGoogle Scholar
  9. 9.
    Khan SA, Emadossadat S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J Hepatol. 2012;56:848–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 2: molecular pathology and treatment. J Gastroenterol Hepatol. 2002;17:1056–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology. 2004;39:732–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54(1):173–84.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    LaRusso NF, Shneider BL, Black D, Gores GJ, James SP, Doo E, Hoofnagle JH. Primary sclerosing cholangitis: summary of a workshop. Hepatology. 2006;44(3):746–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Claessen MM, Vleggaar FP, Tytgat KM, Siersema PD, van Buuren HR. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol. 2009;50(1):158–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Söreide K, Körner H, Havnen J, Söreide JA. Bile duct cysts in adults. Br J Surg. 2004;91(12):1538–48.CrossRefPubMedGoogle Scholar
  16. 16.
    Hughes NR, Pairojkul C, Royce SG, Clouston A, Bhathal PS. Liver fluke-associated and sporadic cholangiocarcinoma: an immunohistochemical study of bile duct, peribiliary gland and tumour cell phenotypes. J Clin Pathol. 2006;59:1073–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Card TR, Solaymani-Dodaran M, West J. Incidence and mortality of primary sclerosing cholangitis in the UK: a population-based cohort study. J Hepatol. 2008;48(6):939–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Lindkvist B, Benitod V, Gullberg B, Bjornsson E. Incidence and prevalence of primary sclerosing cholangitis in a defined adult population in Sweden. Hepatology. 2010;52(2):571–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Melum E, Karlsen TH, Schrumpf E, Bergquist A, Thorsby E, Boberg KM, et al. Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology. 2008;47:90–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Buckles DC, Lindor KD, Larusso NF, Petrovic LM, Gores GJ. In primary sclerosing cholangitis, gallbladder polyps are frequently malignant. Am J Gastroenterol. 2002;97:1138–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Lewis JT, Talwalkar JA, Rosen CB, Smyrk TC, Abraham SC. Prevalence and risk factors for gallbladder neoplasia in patients with primary sclerosing cholangitis: evidence for a metaplasiadysplasia-carcinoma sequence. Am J Surg Pathol. 2007;31:907–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Sibulesky L, Nguyen J, Patel T. Preneoplastic conditions underlying bile duct cancer. Langenbeck's Arch Surg. 2012;397:861–7.CrossRefGoogle Scholar
  23. 23.
    Sithithaworn P, Yongvanit P, Duenngai K, Kiatsopit N, Pairojkul C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2014;21:301–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Sripa B, Mairiang E, Thinkhamrop B, Laha T, Kaewkes S, Sithithaworn P, et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates with elevated levels of interleukin-6. Hepatology. 2009;50:1273–81.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yongvanit P, Pinlaor S, Loilome W. Risk biomarkers for assessment and chemoprevention of liver fluke-associated cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2014;21:309–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Beltrán MA. Pancreaticobiliary reflux in patients with a normal pancreaticobiliary junction: pathologic implications. World J Gastroenterol. 2011;17:953–62.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee TY, Lee SS, Jung SW, Jeon SH, Yun SC, Oh HC, et al. Hepatitis B virus infection and intrahepatic cholangiocarcinoma in Korea: a case-control study. Am J Gastroenterol. 2008;103(7):1716–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Welzel TM, Graubard BI, El-Serag HB, Shaib YH, Hsing AW, Davila JA, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based casecontrol study. Clin Gastroenterol Hepatol. 2007;5(10):1221–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kumagai S, Kurumatani N, Arimoto A, Ichihara G. Cholangiocarcinoma among offset colour proof-printing workers exposed to 1,2-dichloropropane and/or dichloromethane. Occup Environ Med. 2013;70:508–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Kubo S, Nakanuma Y, Takemura S, Sakata C, Urata Y, Nozawa A, et al. Case series of 17 patients with cholangiocarcinoma among young adult workers of a printing company in Japan. J Hepatobiliary Pancreat Sci. 2014;21:479–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Jang S, Chun SM, Hong SM, Sung CO, Park H, Kang HJ, et al. High throughput molecular profiling reveals differential mutation patterns in intrahepatic cholangiocarcinomas arising in chronic advanced liver diseases. Mod Pathol. 2014;27:731–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Robertson S, Hyder O, Dodson R, Nayar SK, Poling J, Beierl K, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum Pathol. 2013;44:2768–73.CrossRefPubMedGoogle Scholar
  33. 33.
    Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer. 2013;119:1669–74.CrossRefPubMedGoogle Scholar
  34. 34.
    Al-Bahrani R, Abuetabh Y, Zeitouni N, Sergi C. Cholangiocarcinoma: risk factors, environmental influences and oncogenesis. Ann Clin Lab Sci. 2013;43:195–210.PubMedGoogle Scholar
  35. 35.
    Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology. 2005;128:2054–65.CrossRefPubMedGoogle Scholar
  36. 36.
    Zheng T, Hong X, Wang J, Pie T, Liang Y, Yin D, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology. 2014;59:935–46.CrossRefPubMedGoogle Scholar
  37. 37.
    Isomoto H, Mott JL, Kobayashi S, Warneburg NW, Bronk SF, Haan S, et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology. 2007;132:384–96.CrossRefPubMedGoogle Scholar
  38. 38.
    Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res. 2006;66:10517–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Nomoto K, Tsuneyama K, Cheng C, Takahashi H, Hori R, Murai Y, et al. Intrahepatic cholangiocarcinoma arising in cirrhotic liver frequently expressed p63-positive basal/stem-cell phenotype. Pathol Res Pract. 2006;202:71–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Jaiswal M, LaRusso NF, Gores GJ. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol. 2001;281:G626–34.CrossRefPubMedGoogle Scholar
  41. 41.
    Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000;60:184–90.PubMedGoogle Scholar
  42. 42.
    Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res. 2001;61:6388–93.PubMedGoogle Scholar
  43. 43.
    Z’Graggen K, Rivera JA, Compton CC, Pins M, Werner J, Fernandez-del Castillo C, et al. Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg. 1997;226:491–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Boberg KM, Schrumpf E, Bergquist A, Broome U, Pares A, Remotti H, et al. Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. J Hepatol. 2000;32:374–80.CrossRefPubMedGoogle Scholar
  45. 45.
    Taniai M, Higuchi H, Burgart LJ, Gores GJ. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology. 2002;123:1090–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Olnes MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology. 2004;66:167–79.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen CY, Shiesh SC, Tsao HC, Lin XZ. The assessment of biliary CA 125, CA 19-9 and CEA in diagnosing cholangiocarcinoma—the influence of sampling time and hepatolithiasis. Hepato-Gastroenterology. 2002;49:616–20.PubMedGoogle Scholar
  48. 48.
    Nehls O, Gregor M, Klump B. Serum and bile markers for cholangiocarcinoma. Semin Liver Dis. 2004;24:139–54.CrossRefPubMedGoogle Scholar
  49. 49.
    Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci. 2005;50:1734–40.CrossRefPubMedGoogle Scholar
  50. 50.
    Akdogan M, Sasmaz N, Kayhan B, Biyikoglu I, Disibeyaz S, Sahin B. Extraordinarily elevated CA19-9 in benign conditions: a case report and review of the literature. Tumori. 2001;87:337–9.PubMedGoogle Scholar
  51. 51.
    Foley WD, Quiroz FA. The role of sonography in imaging of the biliary tract. Ultrasound Q. 2007;23:123–35.CrossRefPubMedGoogle Scholar
  52. 52.
    Gores GJ. Early detection and treatment of cholangiocarcinoma. Liver Transpl. 2000;6:S30–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Braga HJ, Imam K, Bluemke DA. MR imaging of intrahepatic cholangiocarcinoma: use of ferumoxides for lesion localization and extension. AJR Am J Roentgenol. 2001;177:111–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Gleeson FC, Rajan E, Levy MJ, Clain JE, Topazian MD, Harewood GC, et al. EUS-guided FNA of regional lymph nodes in patients with unresectable hilar cholangiocarcinoma. Gastrointest Endosc. 2008;67:438–43.CrossRefPubMedGoogle Scholar
  55. 55.
    Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S, Jochum W, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45:43–50.CrossRefPubMedGoogle Scholar
  56. 56.
    Fritscher-Ravens A, Bohuslavizki KH, Broering DC, Jenicke L, Schafer H, Buchert R, et al. FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun. 2001;22:1277–85.CrossRefPubMedGoogle Scholar
  57. 57.
    Na-Bangchang K, Karbwang J. Traditional herbal medicine for the control of tropical diseases. Trop Med Health. 2014;42(2):3–13.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pushpendra Pratap
    • 1
  • Syed Tasleem Raza
    • 1
  • Sanju Pratap
    • 1
  1. 1.Department of BiotechnologyERA’S Lucknow Medical College & Hospital, ERA UniversityLucknowIndia

Personalised recommendations