Modifiable and Non-modifiable Risk Factors for Colon and Rectal Cancer

  • Smitha Padmanabhan
  • Mostafa I. Waly
  • Varna Taranikanti
  • Nejib Guizani
  • Mohammad S. Rahman
  • Amanat Ali
  • Zaher Al-Attabi
  • Richard C. Deth
Chapter

Abstract

Colorectal cancer (CRC) is the world’s third most common cancer. Before the twentieth century, CRC was relatively uncommon; however, the incidence has risen dramatically especially in the last 50 years. Several risk factors have been proposed, including the adoption of westernized diet, obesity, and physical inactivity. The majority of colorectal cancer continues to occur in industrialized countries. According to the recent studies, CRC is associated with several modifiable and non-modifiable risk factors. These risk factors involve CRC history in first-degree relative, inflammatory bowel disease, consumption of red meat, fruit, and vegetables, cigarette smoking, body mass index to overall population, race, gender, personal habit of alcohol consumption and smoking, ethnicity diabetes, and physical activity. Here we review the key evidence for the role of different risk factors and their effect on CRC prevention and progression.

References

  1. 1.
    Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8(47):83306–14.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Diallo A, Deschasaux M, Latino-Martel P, Hercberg S, Galan P, Fassier P, et al. Red and processed meat intake and cancer risk: results from the prospective NutriNet-Sante cohort study. Int J Cancer. 2018;142(2):230–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Carr PR, Jansen L, Bienert S, Roth W, Herpel E, Kloor M, et al. Associations of red and processed meat intake with major molecular pathological features of colorectal cancer. Eur J Epidemiol. 2017;32(5):409–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Hughes LAE, Simons CCJM, van den Brandt PA, van Engeland M, Weijenberg MP. Lifestyle, diet, and colorectal cancer risk according to (epi) genetic instability: current evidence and future directions of molecular pathological epidemiology. Curr Colorectal Cancer Rep. 2017;13(6):455–69.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009;125(1):171–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Powell JB, Ghotbaddini M. Cancer-promoting and inhibiting effects of dietary compounds: role of the aryl hydrocarbon receptor (AhR). Biochem Pharmacol (Los Angel). 2014;3(1):24–8.Google Scholar
  7. 7.
    Aykan NF. Red meat and colorectal cancer. Oncol Rev. 2015;9(1):288–93.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Santarelli RL, Pierre F, Corpet DE. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer. 2008;60(2):131–44.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baena R, Salinas P. Diet and colorectal cancer. Maturitas. 2015;80(3):258–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148(6):1244–60.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Burkitt DP, Walker AR, Painter NS. Dietary fiber and disease. JAMA. 1974;229(8):1068–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Yao Y, Suo T, Andersson R, Cao Y, Wang C, Lu J, et al. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. Cochrane Database Syst Rev. 2017;1:CD003430.PubMedGoogle Scholar
  13. 13.
    Asano T, McLeod RS. Dietary fibre for the prevention of colorectal adenomas and carcinomas. Cochrane Database Syst Rev. 2002;2:CD003430.Google Scholar
  14. 14.
    Bassett JK, Severi G, Hodge AM, Baglietto L, Hopper JL, English DR, et al. Dietary intake of B vitamins and methionine and colorectal cancer risk. Nutr Cancer. 2013;65(5):659–67.CrossRefPubMedGoogle Scholar
  15. 15.
    Pericleous M, Mandair D, Caplin ME. Diet and supplements and their impact on colorectal cancer. J Gastrointest Oncol. 2013;4(4):409–23.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang TP, Hsu SH, Feng HC, Huang RF. Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway. Carcinogenesis. 2012;33(6):1158–68.CrossRefPubMedGoogle Scholar
  17. 17.
    Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS, et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA. 2007;297(21):2351–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang X-H, Ma J, Smith-Warner SA, Lee JE, Giovannucci E. Vitamin B6 and colorectal cancer: current evidence and future directions. World J Gastroenterol: WJG. 2013;19(7):1005–10.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang X, Giovannucci E. Calcium, vitamin D and colorectal cancer chemoprevention. Best Pract Res Clin Gastroenterol. 2011;25(4–5):485–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Hessami Arani S, Kerachian MA. Rising rates of colorectal cancer among younger Iranians: is diet to blame? Curr Oncol. 2017;24(2):e131–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wei MY, Garland CF, Gorham ED, Mohr SB, Giovannucci E. Vitamin D and prevention of colorectal adenoma: a meta-analysis. Cancer Epidemiol Biomark Prev. 2008;17(11):2958–69.CrossRefGoogle Scholar
  22. 22.
    Robsahm TE, Aagnes B, Hjartaker A, Langseth H, Bray FI, Larsen IK. Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic review and meta-analysis of cohort studies. Eur J Cancer Prev. 2013;22(6):492–505.CrossRefPubMedGoogle Scholar
  23. 23.
    Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24(6):1207–22.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Colditz GA, Peterson LL. Obesity and cancer: evidence, impact, and future directions. Clin Chem. 2018;64(1):154–62. pii: clinchem.2017.277376.  https://doi.org/10.1373/clinchem.2017.277376.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Z, Li S, Cao Y, Tian X, Zeng R, Liao DF, et al. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxidative Med Cell Longev. 2016;2016:9875298.Google Scholar
  26. 26.
    Zhu S, Li J, Bing Y, Yan W, Zhu Y, Xia B, et al. Diet-induced hyperhomocysteinaemia increases intestinal inflammation in an animal model of colitis. J Crohns Colitis. 2015;9(9):708–19.CrossRefPubMedGoogle Scholar
  27. 27.
    Keshteli AH, Baracos VE, Madsen KL. Hyperhomocysteinemia as a potential contributor of colorectal cancer development in inflammatory bowel diseases: a review. World J Gastroenterol. 2015;21(4):1081–90.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Al-Maskari MY, Waly MI, Ali A, Al-Shuaibi YS, Ouhtit A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes. Nutrition. 2012;28(7–8):e23–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Waly MI, Ali A, Al-Nassri A, Al-Mukhaini M, Valliatte J, Al-Farsi Y. Low nourishment of B-vitamins is associated with hyperhomocysteinemia and oxidative stress in newly diagnosed cardiac patients. Exp Biol Med. 2016;241(1):46–51.CrossRefGoogle Scholar
  30. 30.
    White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med. 2014;46(3 Suppl 1):S7–S15.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Theodoratou E, Timofeeva M, Li X, Meng X, Ioannidis JPA. Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer. Annu Rev Nutr. 2017;37:293–320.CrossRefPubMedGoogle Scholar
  32. 32.
    Rock CL, Lampe JW, Patterson RE. Nutrition, genetics, and risks of cancer. Annu Rev Public Health. 2000;21:47–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Valle L. Genetic predisposition to colorectal cancer: where we stand and future perspectives. World J Gastroenterol. 2014;20(29):9828–49.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huang Q, He X, Qin H, Fan X, Xie M, Triple LL. primary malignancies in a patient with colorectal adenocarcinoma: a case report. Int J Surg Case Rep. 2017;42:34–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang L, Huang XE, Xu L, Zhou JN, Yu DS, Zhou X, Li DZ, Guan X. Role of MYH polymorphisms in sporadic colorectal cancer in China: a case-control, population-based study. Asian Pac J Cancer Prev. 2013;14(11):6403–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Smitha Padmanabhan
    • 1
  • Mostafa I. Waly
    • 1
  • Varna Taranikanti
    • 2
  • Nejib Guizani
    • 1
  • Mohammad S. Rahman
    • 1
  • Amanat Ali
    • 1
  • Zaher Al-Attabi
    • 1
  • Richard C. Deth
    • 3
  1. 1.Department of Food Science and Nutrition, College of Agricultural and Marine SciencesSultan Qaboos UniversityMuscatOman
  2. 2.Department of Human and Clinical AnatomyCollege of Medicine and Health Sciences, Sultan Qaboos UniversityMuscatOman
  3. 3.Department of Pharmaceutical SciencesNova Southeastern UniversityFort LauderdaleUSA

Personalised recommendations