Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 149))

  • 727 Accesses

Abstract

This chapter is designed to define the complexity concepts and reviews the use of these concepts in the energy field. Our aim is to give a summary for the motivation of this book and overview the issues and the approaches to analyze and understand those issues. Energy applications have the wide arena for complexity and therefore there is a huge variety of collaborative and computational approaches. This chapter will only review the methods considered in this book, but there are a lot more that would add value to the energy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson, C., Törnberg, A., & Törnberg, P. (2014). Societal systems—Complex or worse? Futures., 63, 145–157.

    Article  Google Scholar 

  • Bahl, B., Lampe, M., Voll, P., & Bardow, A. (2017). Optimization-based identification and quantification of demand-side management potential for distributed energy supply systems. Energy, 135, 889–899.

    Article  Google Scholar 

  • Bale, C. S. E., Varga, L., & Foxon, T. J. (2015). Energy and complexity: New ways forward. Applied Energy [Internet], 138, 150–9. Available from: http://www.sciencedirect.com/science/article/pii/S0306261914011076. [cited 21 Jan 2015]

  • Bergaentzlé, C., Clastres, C., & Khalfallah, H. (2014). Demand-side management and European environmental and energy goals: An optimal complementary approach. Energy Policy, 67, 858–869.

    Article  Google Scholar 

  • Berkes, F., & Berkes, M. K. (2009). Ecological complexity, fuzzy logic, and holism in indigenous knowledge. Futures, 41(1), 6–12.

    Article  Google Scholar 

  • Buchanan, M., & Aldana-Gonzalez, M. (2003). Nexus: Small worlds and the groundbreaking science of networks [Internet]. Physics Today (Vol. 56, 240 p). Available from: http://scitation.aip.org/content/aip/magazine/physicstoday/article/56/3/10.1063/1.1570777.

  • Cainelli, G., De Marchi, V., & Grandinetti, R. (2015). Does the development of environmental innovation require different resources? Evidence from Spanish manufacturing firms. Journal of Cleaner Production, 94, 211–220.

    Article  Google Scholar 

  • Chawla, S., Malec, D., & Sivan, B. (2015). The power of randomness in Bayesian optimal mechanism design. Games and Economic Behavior, 91, 297–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Das, M., & Gosh, S. K. (2017). Data-driven approaches for meteorological time series prediction: A comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognit Letters 1–10.

    Google Scholar 

  • Driebe, D., & McDaniel, R. (2005). Uncertainty and surprise in complex systems [Internet], 19–30 p. Available from: http://www.springerlink.com/content/fh184l6783385723.

  • Fazlollahi, S., Becker, G., Ashouri, A., & Maréchal, F. (2015). Multi-objective, multi-period optimization of district energy systems: IV—A case study. Energy [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S0360544215002856 [cited 19 Apr 2015].

  • Frank Pai, P., & Palazotto, A. N. (2008). HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems. International Journal of Mechanical Sciences, 50(12), 1619–1635.

    Article  Google Scholar 

  • Gamarra, C., & Guerrero, J. M. (2015). Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews., 48, 413–424.

    Article  Google Scholar 

  • Gass, S. I, & Harris, C. M. (Eds.). (2001). Encyclopedia of operations research & management science. Kluwer Aca. Los Angeles, 745 p.

    Google Scholar 

  • Gaziulusoy, A. I., & Brezet, H. (2015). Design for system innovations and transitions: A conceptual framework integrating insights from sustainability science and theories of system innovations and transitions. Journal of Cleaner Production, 108, 1–11.

    Article  Google Scholar 

  • Good, N., Martínez Ceseña, E. A., & Mancarella, P. (2017). Ten questions concerning smart districts. Building and Environment, 118, 362–376.

    Article  Google Scholar 

  • Haddadian, G., Khalili, N., Khodayar, M., & Shahidehpour, M. (2016). Optimal coordination of variable renewable resources and electric vehicles as distributed storage for energy sustainability. Sustain Energy, Grids Networks, 6, 14–24.

    Article  Google Scholar 

  • Hadzibeganovic, T., Stauffer, D., & Han, X. P. (2015). Randomness in the evolution of cooperation. Behavioural Processes, 113, 86–93.

    Article  Google Scholar 

  • Holland, J. H. (2010). Complex adaptive systems. Daedalus, 121(1), 17–30.

    Google Scholar 

  • Jha, S. K., Bilalovic, J., Jha, A., Patel, N., & Zhang, H. (2017). Renewable energy: Present research and future scope of artificial intelligence. Renewable and Sustainable Energy Reviews, 77, 297–317.

    Article  Google Scholar 

  • Kayakutlu, G., & Mercier-Laurent, E. (2017). 5—Future of Energy. In intelligence in energy [Internet]. pp. 153–198. Available from: http://www.sciencedirect.com/science/article/pii/B9781785480393500055.

  • Kazakos, S. S., Papadopoulos, P., Grau Unda, I., Gorman, T., Belaidi, A., & Zigan, S. (2016). Multiple energy carrier optimisation with intelligent agents. Applied Energy, 167, 323–335.

    Article  Google Scholar 

  • Koutsourelakis, P. S. (2008). Design of complex systems in the presence of large uncertainties: A statistical approach. Computer Methods in Applied Mechanics and Engineering, 197(49–50), 4092–4103.

    Article  MATH  Google Scholar 

  • Kramarz, M., & Kramarz, W. (2011). Simulation modelling of complex distribution systems. Procedia—Social and Behavioral Sciences [Internet], 20, 283–291. Available from: http://www.sciencedirect.com/science/article/pii/S1877042811014145.

  • Kwapień, J., & Drożdż, S. (2012). Physical approach to complex systems. Physics Reports [Internet], 515(3–4), 115–226. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0370157312000166.

  • Lezotre, P.-L. (2014). Part II—Value and influencing factors of the cooperation, convergence, and harmonization in the pharmaceutical sector. In International cooperation, convergence and harmonization of pharmaceutical regulations (pp. 171–219).

    Google Scholar 

  • Marchiori, S. C., da Silveira, Maria do Carmo, G., Lotufo, A. D. P., Minussi, C. R., & Lopes, M. L. M. (2011). Neural network based on adaptive resonance theory with continuous training for multi-configuration transient stability analysis of electric power systems. Applied Soft Computing [Internet], 11(1), 706–715. Available from: http://www.sciencedirect.com/science/article/pii/S1568494609002890.

  • Nunna, H. S. V. S. K., Saklani, A. M., Sesetti, A., Battula, S., Doolla, S., & Srinivasan, D. (2016). Multi-agent based demand response management system for combined operation of smart microgrids. Sustain Energy, Grids Networks, 6, 25–34.

    Article  Google Scholar 

  • O’Sullivan, D. (2009). Complexity theory, nonlinear dynamic spatial systems. In International encyclopedia of human geography [Internet]. pp. 239–244. Available from: http://www.sciencedirect.com/science/article/pii/B9780080449104004144/pdfft?md5=8d3212b4ddbbfd6924cd04f313f17024&pid=3-s2.0-B9780080449104004144-main.pdf%5Cn.

  • Pacheco, J. M., Vasconcelos, V. V., & Santos, F. C. (2014). Climate governance as a complex adaptive system: Reply to comments on “climate change governance, cooperation and self-organization”. Physics of Life Reviews, 11, 595–597.

    Article  Google Scholar 

  • Parrott, L. (2011). Hybrid modelling of complex ecological systems for decision support: Recent successes and future perspectives. Ecological Informatics, 6, 44–49.

    Article  Google Scholar 

  • Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74–86.

    Article  Google Scholar 

  • Popoola, O. M. (2018). Computational intelligence modelling based on variables interlinked with behavioral tendencies for energy usage profile—A necessity. Renewable and Sustainable Energy Reviews, 82, 60–72.

    Article  Google Scholar 

  • Rammel, C., Stagl, S., & Wilfing, H. (2007). Managing complex adaptive systems—A co-evolutionary perspective on natural resource management. Ecological Economics, 63(1), 9–21.

    Article  Google Scholar 

  • Rapaport, B., & Ireland, V. (2012). Understanding the dynamics of system-of-systems in complex regional conflicts. Procedia Computer Science, 12, 43–48.

    Article  Google Scholar 

  • Ruano, A. E., Ge, S. S., Guerra, T. M., Lewis, F. L., Principe, J. C., & Colnarič, M. (2014). Computational intelligence in control. In IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 8867–8878.

    Google Scholar 

  • Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Yamanoi, J., et al. (2013). Modeling complex systems with adaptive networks. Computers & Mathematics with Applications, 65(10), 1645–1664.

    Article  MathSciNet  MATH  Google Scholar 

  • Siano, P. (2014). Demand response and smart grids—A survey. Renewable and Sustainable Energy Reviews, 30, 461–478.

    Article  Google Scholar 

  • Siddaiah, R., & Saini, R. P. (2016). A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews, 58, 376–396.

    Article  Google Scholar 

  • Strizh, I., Joutchkov, A., Tverdokhlebov, N., & Golitsyn, S. (2007). Systems biology and grid technologies: Challenges for understanding complex cell signaling networks. Future Generation Computer Systems, 23(3), 428–434.

    Article  Google Scholar 

  • Weber, G., & Cabras, I. (2018). The transition of Germany’s energy production, green economy, low-carbon economy, socio-environmental conflicts, and equitable society. Journal of Cleaner Production, 167, 1222–1231.

    Article  Google Scholar 

  • Zakheim, D. S. (2014). Facing the challenges of the 21st century. Orbis, 58(1), 8–14.

    Article  Google Scholar 

  • Zhao, Q. J., & Wen, Z. M. (2012). Integrative networks of the complex social-ecological systems. Procedia Environmental Sciences [Internet], 13, 1383–94. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1878029612001326.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülgün Kayakutlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kayakutlu, G. (2018). Complexity in Energy Systems. In: Kahraman, C., Kayakutlu, G. (eds) Energy Management—Collective and Computational Intelligence with Theory and Applications. Studies in Systems, Decision and Control, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-319-75690-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75690-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75689-9

  • Online ISBN: 978-3-319-75690-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics