Skip to main content

Quantitative Analysis of Kelvin Probe Force Microscopy on Semiconductors

  • Chapter
  • First Online:
  • 2777 Accesses

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

As is well known, Kelvin Probe Force Microscopy (KPFM) is a powerful and versatile tool to measure the contact potential difference (CPD) in metals. Here, we discuss the application of KPFM for the investigation of semiconducting materials, where the interpretation of KPFM is complicated by band bending and surface charge. Nevertheless, it is demonstrated that the signal measured with KPFM in semiconductors should be interpreted as the contact potential difference (CPD). This interpretation enables the extraction of information related to semiconductor properties such as the dopant density, surface charge, density of surface states, and band bending. The CPD description and its validation are discussed in detail. Also, model calculations of the expected KPFM signal are presented for a wide range of doping concentrations and for various types of surface charge models, including surface states with a Fermi level dependent charge and surface states with fixed charge. It is demonstrated that the model calculations within the CPD model are consistent with experiments from the literature. As an example of how KPFM data on semiconductors can be analyzed, it is shown how information on surface charge is obtained from measurements on Si pn-junction dopant profiles. Combining KPFM with illumination provides many interesting possibilities for the study of semiconductors, which are briefly discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Saraf, M. Molotskii, Y. Rosenwaks, Appl. Phys. Lett. 86, 172104 (2005)

    Article  ADS  Google Scholar 

  2. S. Saraf, Y. Rosenwaks, Surf. Sci. 574, L35 (2005)

    Article  ADS  Google Scholar 

  3. S.D. Tzeng, S. Gwo, J. Appl. Phys. 100, 023711 (2006)

    Article  ADS  Google Scholar 

  4. S. Barbet, R. Aubry, M.A. di Forte-Poisson, J.C. Jacquet, D. Deresmes, T. Melin, D. Theron, Appl. Phys. Lett. 93, 212107 (2008)

    Article  ADS  Google Scholar 

  5. B.Y. Tsui, C.M. Hsieh, P.C. Su, S.D. Tzeng, S. Gwo, Jap. J. Appl. Phys. 47, 4448 (2008)

    Article  ADS  Google Scholar 

  6. I. Volotsenko, M. Molotskii, Z. Barkay, J. Marczewski, P. Grabiec, B. Jaroszewicz, G. Meshulam, E. Grunbaum, Y. Rosenwaks, J. Appl. Phys. 107, 014510 (2010)

    Article  ADS  Google Scholar 

  7. M. Arita, K. Torigoe, T. Yamauchi, T. Nagaoka, T. Aiso, Y. Yamashita, T. Motooka, Appl. Phys. Lett. 104, 132103 (2014)

    Article  ADS  Google Scholar 

  8. C. Maragliano, S. Lilliu, M. Dahlem, M. Chiesa, T. Souier, M. Stefancich, Sci. Rep. 4, 4203 (2014)

    Article  ADS  Google Scholar 

  9. L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999)

    Article  ADS  Google Scholar 

  10. T. Meoded, R. Shikler, N. Fried, Y. Rosenwaks, Appl. Phys. Lett. 75, 2435 (1999)

    Article  ADS  Google Scholar 

  11. F. Streicher, S. Sadewasser, M.C. Lux-Steiner, Rev. Sci. Instrum. 80, 013907 (2009)

    Article  ADS  Google Scholar 

  12. L. Polak, R.J. Wijngaarden, Phys. Rev. B 93, 195320 (2016)

    Article  ADS  Google Scholar 

  13. W.H. Brattain, J. Bardeen, Bell Syst. Tech. J. 32, 1 (1953)

    Article  Google Scholar 

  14. M. Nonnenmacher, M. O’Boyle, H. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)

    Article  ADS  Google Scholar 

  15. A. Kikukawa, S. Hosaka, R. Imura, Appl. Phys. Lett. 66, 3510 (1995)

    Article  ADS  Google Scholar 

  16. A.K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, P. Kaszuba, C. Daghlian, J. Appl. Phys. 77, 1888 (1995)

    Article  ADS  Google Scholar 

  17. T. Hochwitz, A.K. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Never, P. Kaszuba, R. Gluck, R. Wells, J. Pekarik et al., J. Vac. Sci. Technol. B 14, 440 (1996)

    Article  Google Scholar 

  18. T. Glatzel, S. Sadewasser, R. Shikler, Y. Rosenwaks, M.C. Lux-Steiner, Mater. Sci. Eng. B 102, 138 (2003)

    Article  Google Scholar 

  19. R. Shikler, T. Meoded, N. Fried, B. Mishori, Y. Rosenwaks, J. Appl. Phys. 86, 107 (1999)

    Article  ADS  Google Scholar 

  20. T. Glatzel, D.F. Marrón, T. Schedel-Niedrig, S. Sadewasser, M.C. Lux-Steiner, Appl. Phys. Lett. 81, 2017 (2002)

    Google Scholar 

  21. V.W. Bergmann, S.A.L. Weber, F.J. Ramos, M.K. Nazeeruddin, M. Grätzel, D. Li, A.L. Domanski, I. Lieberwirth, S. Ahmad, R. Berger, Nat. Commun. 5 (2014)

    Google Scholar 

  22. C.H. Lin, D.R. Doutt, U.K. Mishra, T.A. Merz, L.J. Brillson, Appl. Phys. Lett. 97, 223502 (2010)

    Article  ADS  Google Scholar 

  23. A.M. Hilton, J.L. Brown, E.A. Moore, J.A. Hoelscher, E.R. Heller, D.L. Dorsey, J. Electron. Mater. 44, 3259 (2015)

    Article  ADS  Google Scholar 

  24. S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. Tegude, G. Bacher, Nanotechnology 20, 385702 (2009)

    Article  Google Scholar 

  25. C. Van Ben, H.D. Cho, T.W. Kang, W. Yang, Thin Solid Films 520, 4622 (2012)

    Article  ADS  Google Scholar 

  26. E. Halpern, A. Henning, H. Shtrikman, R. Rurali, X. Cartoixà, Y. Rosenwaks, Nano Lett. 15, 481 (2014)

    Article  ADS  Google Scholar 

  27. S. Sadewasser, in Kelvin Probe Force Microscopy, ed. by S. Sadewasser, T. Glatzel (Springer, 2012), chap. 2

    Google Scholar 

  28. T. Hochwitz, A.K. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Vac. Sci. Technol. B 14, 457 (1996)

    Article  Google Scholar 

  29. S. Sadewasser, C. Leendertz, F. Streicher, M.C. Lux-Steiner, Nanotechnology 20, 505503 (2009)

    Article  Google Scholar 

  30. S. Sadewasser, T. Glatzel, R. Shikler, Y. Rosenwaks, M.C. Lux-Steiner, Appl. Surf. Sci. 210, 32 (2003)

    Article  ADS  Google Scholar 

  31. L. Polak, R.J. Wijngaarden, Ultramicroscopy 171, 158 (2016)

    Article  Google Scholar 

  32. S. Hudlet, M. Saint Jean, B. Roulet, J. Berger, C. Guthmann, J. Appl. Phys. 77, 3308 (1995)

    Article  ADS  Google Scholar 

  33. C. Baumgart, M. Helm, H. Schmidt, Phys. Rev. B 80, 085305 (2009)

    Article  ADS  Google Scholar 

  34. C. Baumgart, A.D. Müller, F. Müller, H. Schmidt, Phys. Status Solidi A 208, 777 (2011)

    Article  ADS  Google Scholar 

  35. C. Baumgart, Dissertation, Helmoltz Zentrum Dresden Rossendorf, 2012

    Google Scholar 

  36. A.H. Marshak, IEEE Trans. Electron Dev. 36, 1764 (1989)

    Article  ADS  Google Scholar 

  37. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, 2006)

    Google Scholar 

  38. F.G. Allen, G.W. Gobeli, Phys. Rev. 127, 150 (1962)

    Article  ADS  Google Scholar 

  39. H. Flietner, Surf. Sci. 200, 463 (1988)

    Article  ADS  Google Scholar 

  40. H. Hasegawa, T. Sawada, Thin Solid Films 103, 119 (1983)

    Article  ADS  Google Scholar 

  41. L.Å. Ragnarsson, P. Lundgren, J. Appl. Phys. 88, 938 (2000)

    Article  ADS  Google Scholar 

  42. W. Mönch, Semiconductor Surfaces and Interfaces (Springer, Berlin, Heidelberg, 2001)

    Book  MATH  Google Scholar 

  43. J. Bardeen, Phys. Rev. 71, 717 (1947)

    Article  ADS  Google Scholar 

  44. H. Angermann, Solid State Phenom. 103, 23 (2005)

    Article  Google Scholar 

  45. B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow, J. Electrochem. Soc. 114, 266 (1967)

    Article  Google Scholar 

  46. H.F. Okorn-Schmidt, IBM, J. Res. Dev. 43, 351 (1999)

    Google Scholar 

  47. R. Shikler, N. Fried, T. Meoded, Y. Rosenwaks, Phys. Rev. B 61, 11041 (2000)

    Article  ADS  Google Scholar 

  48. S. Sadewasser, Phys. Status Solidi A 203, 2571 (2006)

    Article  ADS  Google Scholar 

  49. F. Streicher, S. Sadewasser, T. Enzenhofer, H.W. Schock, M.C. Lux-Steiner, Thin Solid Films 517, 2349 (2009)

    Article  ADS  Google Scholar 

  50. E.M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N. Munday, M.S. Leite, Adv. Energy Mater. 5 (2015)

    Google Scholar 

  51. M. Gwon, A. Sohn, Y. Cho, S.H. Phark, J. Ko, Y.S. Kim, D.W. Kim, Sci. Rep. 5, 16727 (2015)

    Article  ADS  Google Scholar 

  52. I. Sharma, B.R. Mehta, Appl. Phys. Lett. 110, 061602 (2017)

    Article  ADS  Google Scholar 

  53. A. Henning, G. Günzburger, R. Jöhr, Y. Rosenwaks, B. Bozic-Weber, C.E. Housecroft, E.C. Constable, E. Meyer, T. Glatzel, Beilstein J. Nanotechnol. 4, 418 (2013)

    Article  Google Scholar 

  54. E. Kim, Y. Cho, A. Sohn, D.W. Kim, H.H. Park, J. Kim, Curr. Appl. Phys. 16, 141 (2016)

    Article  ADS  Google Scholar 

  55. J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, C. Li, Angew. Chem. 127, 9239 (2015)

    Article  Google Scholar 

  56. V. Palermo, M. Palma, P. Samorì, Adv. Mater. 18, 145 (2006)

    Article  Google Scholar 

  57. V. Palermo, G. Ridolfi, A.M. Talarico, L. Favaretto, G. Barbarella, N. Camaioni, P. Samori, Adv. Funct. Mater. 17, 472 (2007)

    Article  Google Scholar 

  58. S. Watanabe, Y. Fukuchi, M. Fukasawa, T. Sassa, A. Kimoto, Y. Tajima, M. Uchiyama, T. Yamashita, M. Matsumoto, T. Aoyama, A.C.S. Appl, Mater. Interfaces 6, 1481 (2014)

    Article  Google Scholar 

  59. F. Fuchs, F. Caffy, R. Demadrille, T. Mélin, B. Grevin, ACS Nano 10, 739 (2016)

    Article  Google Scholar 

  60. G. Shao, M.S. Glaz, F. Ma, H. Ju, D.S. Ginger, ACS Nano 8, 10799 (2014)

    Article  Google Scholar 

  61. L. Borowik, H. Lepage, N. Chevalier, D. Mariolle, O. Renault, Nanotechnology 25, 265703 (2014)

    Article  ADS  Google Scholar 

  62. H. Dember, Zeitschrift für Physik 32, 554 (1931)

    Google Scholar 

Download references

Acknowledgements

This chapter is largely based on a previous publication by the same authors [12], and we thank the American Physical Society for the right given to authors to reuse their figures in another publication. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO) and was carried out within the research program of BioSolar Cells, co-financed by the Dutch Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinke J. Wijngaarden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polak, L., Wijngaarden, R.J. (2018). Quantitative Analysis of Kelvin Probe Force Microscopy on Semiconductors. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_9

Download citation

Publish with us

Policies and ethics