Skip to main content

Imaging Static Charge Distributions: A Comprehensive KPFM Theory

  • Chapter
  • First Online:
Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

We analyze Kelvin probe force microscopy (KPFM) for tip-sample systems that contain static charges by presenting a rigorous derivation for the respective KPFM signal in all common KPFM modes, namely amplitude modulation, frequency modulation, or heterodyne detection in the static, open-loop or closed-loop variant. The electrostatic model employed in the derivation is based on a general electrostatic analysis of an arbitrary tip-sample geometry formed by two metals, and which can include a static charge distribution and dielectric material in-between. The effect of the electrostatic force on the oscillating tip is calculated from this model within the harmonic approximation, and the observables for each of the above KPFM modes are derived from the tip oscillation signal. Our calculation reveals that the KPFM signal can for all modes be written as a weighted sum over all charges, whereby each charge is multiplied with a position-dependent weighting factor depending on the tip-sample geometry, the KPFM mode, and the oscillation amplitude. Interestingly, as the weight function does not depend on the charges itself, the contribution of the void tip-sample system and the charge distribution can be well-separated in the KPFM signal. The weight function for charges allows for a detailed understanding of the KPFM contrast formation, and enables to trace the dependence of the KPFM signal on different parameters such as the tip-sample geometry or the oscillation amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We distinguish here between influence as the effect of shifting electron density within or between conductors due to an external field and polarisation as the result of generating a displacement field in a dielectric material.

  2. 2.

    The three quantities \(F_\text {el,a}\), \(F_\text {el,b}\) and \(F_\text {el,c}\) might firsthand appear to be spectral components of \(F_\text {el}\) —they would represent a static component (at zero frequency), a first harmonic (at frequency \(\nu _\text {el}\)) and a second harmonic (at frequency \(2\nu _\text {el}\)). However, it is important to remember that during dynamic AFM and dynamic KPFM measurements, the tip-sample distance \(z_\text {ts}\) is also a function of time. Therefore, considering \(F_\text {el,a}\), \(F_\text {el,b}\) and \(F_\text {el,c}\) to be spectral components of \(F_\text {el}\) is only reasonable under the assumption that \(z_\text {ts}\) is fixed.

  3. 3.

    In a FM-AFM experiment, the demodulated deflection signal is typically available as the excitation frequency or the frequency shift relative to a reference frequency.

References

  1. S.A. Burke, J.M. LeDue, Y. Miyahara, J.M. Topple, S. Fostner, P. Grütter, Nanotechnology 20(26), 264012 (2009). https://doi.org/10.1088/0957-4484/20/26/264012

  2. M. Kittelmann, P. Rahe, A. Gourdon, A. Kühnle, ACS Nano 6(8), 7406 (2012). https://doi.org/10.1021/nn3025942

  3. C. Barth, A.S. Foster, C.R. Henry, A.L. Shluger, Adv. Mater. 23(4), 477 (2011). https://doi.org/10.1002/adma.201002270

  4. L. Gross, F. Mohn, P. Liljeroth, J. Repp, F.J. Giessibl, G. Meyer, Science 324(5933), 1428 (2009). https://doi.org/10.1126/science.1172273

  5. C. Barth, C.R. Henry, Appl. Phys. Lett. 89(25), 252119 (2006). https://doi.org/10.1063/1.2410223

  6. B. Hoff, M. Gingras, R. Peresutti, C.R. Henry, A.S. Foster, C. Barth, J. Phys. Chem. C 118(26), 14569 (2014). https://doi.org/10.1021/jp501738c

  7. A. Hinaut, A. Pujol, F. Chaumeton, D. Martrou, A. Gourdon, S. Gauthier, Beilstein J. Nanotechnol. 3, 221 (2012). https://doi.org/10.3762/bjnano.3.25

  8. J.L. Neff, P. Milde, C. Pérez León, M.D. Kundrat, L.M. Eng, C.R. Jacob, R. Hoffmann-Vogel, ACS Nano 8(4), 3294 (2014). https://doi.org/10.1021/nn404257v

  9. C. Barth, C.R. Henry, J. Phys. Chem. C 113(1), 247 (2009). https://doi.org/10.1021/Jp807340k

  10. B. Hoff, C.R. Henry, C. Barth, Nanoscale 8, 411 (2015). https://doi.org/10.1039/C5NR04541J

  11. W. Steurer, J. Repp, L. Gross, I. Scivetti, M. Persson, G. Meyer, Phys. Rev. Lett. 114(3), 036801 (2015). https://doi.org/10.1103/PhysRevLett.114.036801

  12. W. Steurer, S. Fatayer, L. Gross, G. Meyer, Nat. Commun. 6, 8353 (2015). https://doi.org/10.1038/ncomms9353

  13. P. Rahe, R.P. Steele, C.C. Williams, Nano Lett. 16, 911 (2016). https://doi.org/10.1021/acs.nanolett.5b03725

  14. F. Bocquet, L. Nony, C. Loppacher, T. Glatzel, Phys. Rev. B 78(3), 035410 (2008). https://doi.org/10.1103/PhysRevB.78.035410

  15. L. Nony, A.S. Foster, F. Bocquet, C. Loppacher, Phys. Rev. Lett. 103(3), 036802 (2009). https://doi.org/10.1103/PhysRevLett.103.036802

  16. L. Nony, F. Bocquet, C. Loppacher, T. Glatzel, Nanotechnology 20(26), 264014 (2009). https://doi.org/10.1088/0957-4484/20/26/264014

  17. G.H. Enevoldsen, T. Glatzel, M.C. Christensen, J.V. Lauritsen, F. Besenbacher, Phys. Rev. Lett. 100(23), 236104 (2008). https://doi.org/10.1103/PhysRevLett.100.236104

  18. A. Liscio, V. Palermo, D. Gentilini, F. Nolde, K. Müllen, P. Samorì, Adv. Funct. Mater. 16(11), 1407 (2006). https://doi.org/10.1002/adfm.200600145

  19. C. Pérez León, H. Drees, S.M. Wippermann, M. Marz, R. Hoffmann-Vogel, J. Phys. Chem. Lett. 7(3), 426 (2016). https://doi.org/10.1021/acs.jpclett.5b02650

  20. B. Schuler, S.X. Liu, Y. Geng, S. Decurtins, G. Meyer, L. Gross, Nano Lett. 14(6), 3342 (2014). https://doi.org/10.1021/nl500805x

  21. W. Melitz, J. Shen, A.C. Kummel, S. Lee, Surf. Sci. Rep. 66(1), 1 (2011). https://doi.org/10.1016/j.surfrep.2010.001

  22. T. Glatzel, S. Sadewasser, M.C. Lux-Steiner, Appl. Surf. Sci. 210(1–2), 84 (2003). https://doi.org/10.1016/S0169-4332(02)01484-8

  23. P. Rahe, M. Kittelmann, J.L. Neff, M. Nimmrich, M. Reichling, P. Maass, A. Kühnle, Adv. Mater. 25(29), 3948 (2013). https://doi.org/10.1002/adma.201300604

  24. L. Bartels, Nat. Chem. 2(2), 87 (2010). https://doi.org/10.1038/nchem.517

  25. J.L. Neff, P. Rahe, Phys. Rev. B 91(8), 085424 (2015). https://doi.org/10.1103/PhysRevB.91.085424

  26. H. Söngen, P. Rahe, J.L. Neff, R. Bechstein, J. Ritala, A.S. Foster, A. Kühnle, J. Appl. Phys. 119(2), 025304 (2016). https://doi.org/10.1063/1.4939619

  27. C. Barth, T. Hynninen, M. Bieletzki, C.R. Henry, A.S. Foster, F. Esch, U. Heiz, New J. Phys. 12, 093024 (2010). https://doi.org/10.1088/1367-2630/12/9/093024

  28. T. Hynninen, A.S. Foster, C. Barth. e-J. Surf. Sci. Nanotechnol. 9, 6 (2011). https://doi.org/10.1380/ejssnt.2011.6

  29. A. Sadeghi, A. Baratoff, S.A. Ghasemi, S. Goedecker, T. Glatzel, S. Kawai, E. Meyer, Phys. Rev. B 86(7), 075407 (2012). https://doi.org/10.1103/PhysRevB.86.075407

  30. L.N. Kantorovich, A.I. Livshits, M. Stoneham, J. Phys. Condens. Matter 12(6), 795 (2000). https://doi.org/10.1088/0953-8984/12/6/304

  31. G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, Y. Rosenwaks, Beilstein J. Nanotechnol. 2, 252 (2011). https://doi.org/10.3762/bjnano.2.29

  32. H.O. Jacobs, A. Stemmer, Surf. Interface Anal. 27(5–6), 361 (1999). https://doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<361::AID-SIA482>3.0.CO;2-8

  33. J. Jackson, Klassische Elektrodynamik, 3. Ausgabe. De Gruyter Studium, (De Gruyter, 2002)

    Google Scholar 

  34. L. Landau, E. Lifschitz, Elektrodynamik der Kontinua. Lehrbuch der theoretischen Physik (Akademie-Verlag, 1990)

    Google Scholar 

  35. J.M.R. Weaver, D.W. Abraham, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 9(3), 1559 (1991). https://doi.org/10.1116/1.585423

  36. S. Hudlet, M.S. Jean, C. Guthmann, J. Berger, Eur. Phys. J. B: Condens. Matter Phys. 2(1), 5 (1998). https://doi.org/10.1007/s100510050219

  37. A. Sadeghi, A. Baratoff, S. Goedecker, Phys. Rev. B 88(3), 035436 (2013). https://doi.org/10.1103/PhysRevB.88.035436

  38. H. Söngen, R. Bechstein, A. Kühnle, J. Phys.: Condens. Matter 29(27), 274001 (2017). https://doi.org/10.1088/1361-648X/aa6f8b

  39. M. Guggisberg, M. Bammerlin, C. Loppacher, O. Pfeiffer, A. Abdurixit, V. Barwich, R. Bennewitz, A. Baratoff, E. Meyer, H.J. Güntherodt, Phys. Rev. B 61(16), 11151 (2000). https://doi.org/10.1103/PhysRevB.61.11151

  40. J. Polesel-Maris, M.A. Venegas de la Cerda, D. Martrou, S. Gauthier, Phys. Rev. B 79(23), 235401 (2009). https://doi.org/10.1103/PhysRevB.79.235401

  41. J. Lübbe, M. Temmen, P. Rahe, M. Reichling, Beilstein J. Nanotechnol. 7, 1885 (2016). https://doi.org/10.3762/bjnano.7.181

  42. H. Diesinger, D. Deresmes, T. Mélin, Beilstein J. Nanotechnol. 5, 1 (2014). https://doi.org/10.3762/bjnano.5.1

  43. M. Shimizu, H. Watanabe, K. Anazawa, T. Miyahara, C. Manabe, J. Chem. Phys. 110(24), 12116 (1999). https://doi.org/10.1063/1.479147

  44. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58(25), 2921 (1991). https://doi.org/10.1063/1.105227

  45. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L.M. Eng, Phys. Rev. B 71(12), 125424 (2005). https://doi.org/10.1103/PhysRevB.71.125424

  46. L. Collins, J.I. Kilpatrick, S.A.L. Weber, A. Tselev, I.V. Vlassiouk, I.N. Ivanov, S. Jesse, S.V. Kalinin, B.J. Rodriguez, Nanotechnology 24(47), 475702 (2013). https://doi.org/10.1088/0957-4484/24/47/475702

  47. F. Mohn, L. Gross, N. Moll, G. Meyer, Nat. Nanotechnol. 7, 227 (2012). https://doi.org/10.1038/nnano.2012.20

  48. S. Kitamura, K. Suzuki, M. Iwatsuki, Appl. Surf. Sci. 140, 265 (1999). https://doi.org/10.1016/S0169-4332(98)00538-8

  49. F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, P. Jelínek, Phys. Rev. Lett. 115(7), 076101 (2015). https://doi.org/10.1103/PhysRevLett.115.076101

  50. S. Kitamura, M. Iwatsuki, Applied Phys. Lett. 72(24), 3154 (1998). https://doi.org/10.1063/1.121577

  51. O. Takeuchi, Y. Ohrai, S. Yoshida, H. Shigekawa, Jpn. J. Appl. Phys. 46(8S), 5626 (2007). https://doi.org/10.1143/JJAP.46.5626

  52. Y. Sugawara, L. Kou, Z. Ma, T. Kamijo, Y. Naitoh, Y.J. Li, Appl. Phys. Lett. 100(22), 223104 (2012). https://doi.org/10.1063/1.4723697

Download references

Acknowledgements

The authors are much obliged to Lev Kantorovich (King’s College London), Ralf Bechstein and Angelika Kühnle (both from University of Mainz) for fruitful discussions. P.R. gratefully acknowledges financial support by the German Research Foundation (DFG) via grant RA2832/1-1. H.S. is a recipient of a DFG-funded position through the Excellence Initiative (DFG/GSC 266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Rahe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahe, P., Söngen, H. (2018). Imaging Static Charge Distributions: A Comprehensive KPFM Theory. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_6

Download citation

Publish with us

Policies and ethics