Skip to main content

The Electrostatic Field of CO Functionalized Metal Tips

  • Chapter
  • First Online:
  • 2597 Accesses

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

This chapter conclusively shows that the electric field created by CO functionalized metal tips cannot be described by a single dipole. It is necessary to take into account both the positive dipole that describes the electric field created by the metal tip and the negative charge cloud strongly localized in front of the oxygen atom. We have incorporated this insight into a theoretical model that allows the efficient simulation of AFM measurements retaining a first-principles accuracy. Using this model, we have identified the contrast formation mechanisms for localized ionic defects (Cl vacancies on a metal–supported NaCl bilayer). The opposite sign and different spatial extension of the associated electric fields explain the rich contrast observed. While both terms compete to determine the contrast of uncompensated, extended defects like the Cl vacancy, atomic–scale resolution of the ionic lattice arises mainly from the CO electric field as the more extended field created by the metal apex averages out the contribution coming from those periodic and rapidly varying charge distributions. The insight gained from our analysis is used to address the apparent contradiction in the interpretation of previous experiments involving CO molecules either as a tip on a metallic apex probing ionic surfaces or as an adsorbate probed with a pure metallic tip.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944), 1110–1114 (2009)

    Article  ADS  Google Scholar 

  2. L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W.M. Abdel-Mageed, M. Jaspars, Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2(10), 821–825 (2010)

    Google Scholar 

  3. M. Emmrich, F. Huber, F. Pielmeier, J. Welker, T. Hofmann, M. Schneiderbauer, D. Meuer, S. Polesya, S. Mankovsky, D. Ködderitzsch, H. Ebert, F.J. Giessibl, Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348(6232), 308–311 (2015)

    Article  ADS  Google Scholar 

  4. D.G. de Oteyza, P. Gorman, Y.-C. Chen, S. Wickenburg, A. Riss, D.J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M.F. Crommie, F.R. Fischer, Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340(6139), 1434–1437 (2013)

    Google Scholar 

  5. F. Albrecht, N. Pavliček, C. Herranz-Lancho, M. Ruben, J. Repp, Characterization of a surface reaction by means of atomic force microscopy. J. Am. Chem. Soc. 137(23), 7424–7428 (2015)

    Article  Google Scholar 

  6. L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitian, D. Pena, A. Gourdon, G. Meyer. Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012)

    Google Scholar 

  7. C. Weiss, C. Wagner, C. Kleimann, M. Rohlfing, F.S. Tautz, R. Temirov, Imaging Pauli repulsion in scanning tunneling microscopy. Phys. Rev. Lett. 105(8), 86103 (2010)

    Article  ADS  Google Scholar 

  8. G. Kichin, C. Weiss, C. Wagner, F. Stefan Tautz, R. Temirov, Single molecule and single atom sensors for atomic resolution imaging of chemically complex surfaces. J. Am. Chem. Soc. 133(42), 16847–16851 (2011)

    Google Scholar 

  9. C. Chiang, C. Xu, Z. Han, W. Ho, Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344(6186), 885–888 (2014)

    Google Scholar 

  10. F. Mohn, L. Gross, N. Moll, G. Meyer, Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7(4), 227–231 (2012)

    Article  ADS  Google Scholar 

  11. N. Moll, L. Gross, F. Mohn, A. Curioni, G. Meyer, The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J. Phys. 12(12), 125020 (2010)

    Article  ADS  Google Scholar 

  12. P. Hapala, G. Kichin, C. Wagner, F. Stefan Tautz, R. Temirov, P. Jelínek, Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90(8), 85421 (2014)

    Google Scholar 

  13. M.P. Boneschanscher, S.K. Hämäläinen, P. Liljeroth, I. Swart, Sample corrugation affects the apparent bond lengths in atomic force microscopy. ACS Nano 8(3), 3006–3014 (2014)

    Google Scholar 

  14. M. Neu, N. Moll, L. Gross, G. Meyer, F.J. Giessibl, J. Repp, Image correction for atomic force microscopy images with functionalized tips. Phys. Rev. B 89(20), 205407 (2014)

    Google Scholar 

  15. N. Moll, B. Schuler, S. Kawai, X. Feng, L. Peng, A. Orita, J. Otera, A. Curioni, M. Neu, J. Repp, G. Meyer, L. Gross, Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 14(11), 6127–6131 (2014)

    Google Scholar 

  16. P. Hapala, R. Temirov, F. Stefan Tautz, P. Jelínek, Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 113(22), 226101 (2014)

    Google Scholar 

  17. F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, P. Jelínek, Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 115(7), 76101 (2015)

    Google Scholar 

  18. A.J. Weymouth, T. Hofmann, F.J. Giessibl, Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343(6175), 1120–1122 (2014)

    Article  ADS  Google Scholar 

  19. M. Schneiderbauer, M. Emmrich, A.J. Weymouth, F.J. Giessibl, CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces. Phys. Rev. Lett. 112(16), 166102 (2014)

    Article  ADS  Google Scholar 

  20. A. Schwarz, A. Köhler, J. Grenz, R. Wiesendanger, A. Köhler, J. Grenz, R. Wiesendanger, Detecting the dipole moment of a single carbon monoxide molecule. Appl. Phys. Lett. 105(1), 11606 (2014)

    Article  Google Scholar 

  21. T. Hofmann, F. Pielmeier, F.J. Giessibl, Chemical and crystallographic characterization of the tip apex in scanning probe microscopy. Phys. Rev. Lett. 112(6), 66101 (2014)

    Article  ADS  Google Scholar 

  22. D.Z. Gao, J. Grenz, M.B. Watkins, F. Federici Canova, A. Schwarz, R. Wiesendanger, A.L. Shluger, Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. ACS Nano 8(5), 5339–5351 (2014)

    Google Scholar 

  23. R. Smoluchowski, Anisotropy of the electronic work function of metals. Phys. Rev. 60(9), 661–674 (1941)

    Article  ADS  MATH  Google Scholar 

  24. G.E. Scuseria, M.D. Miller, F. Jensen, J. Geertsen, The dipole moment of carbon monoxide. J. Chem. Phys. 94(10), 6660–6663 (1991)

    Article  ADS  Google Scholar 

  25. B. de la Torre, M. Ellner, P. Pou, N. Nicoara, R. Pérez, J.M. Gómez-Rodríguez, Atomic-scale variations of the mechanical response of 2D materials detected by noncontact atomic force microscopy. Phys. Rev. Lett. 116, 245502 (2016)

    Google Scholar 

  26. G. Teobaldi, K. Lämmle, T. Trevethan, M. Watkins, A. Schwarz, R. Wiesendanger, A.L. Shluger, Chemical resolution at ionic crystal surfaces using dynamic atomic force microscopy with metallic tips. Phys. Rev. Lett. 106(21), 216102 (2011)

    Article  ADS  Google Scholar 

  27. T. Trevethan, M. Watkins, A.L. Shluger, Models of the interaction of metal tips with insulating surfaces. Beilstein J. Nanotechnol. 3, 329–335 (2012)

    Google Scholar 

  28. L. Gross, B. Schuler, F. Mohn, N. Moll, N. Pavliček, W. Steurer, I. Scivetti, K. Kotsis, M. Persson, G. Meyer, Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips. Phys. Rev. B 90(15), 155455 (2014)

    Article  ADS  Google Scholar 

  29. M. Ellner, N. Pavliček, P. Pou, B. Schuler, N. Moll, G. Meyer, L. Gross, R. Pérez, The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 16(3), 1974–1980 (2016)

    Article  ADS  Google Scholar 

  30. Z. Sun, M.P. Boneschanscher, I. Swart, D. Vanmaekelbergh, P. Liljeroth, Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys. Rev. Lett. 106(4), 046104 (2011)

    Article  ADS  Google Scholar 

  31. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  32. J. Repp, G. Meyer, S. Paavilainen, F.E. Olsson, M. Persson, Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron-phonon coupling in double-barrier tunneling junctions. Phys. Rev. Lett. 95(22), 225503 (2005)

    Google Scholar 

  33. Z. Li, H.-Y. Tiffany Chen, K. Schouteden, K. Lauwaet, E. Janssens, C. Van Haesendonck, G. Pacchioni, P. Lievens, Lateral manipulation of atomic vacancies in ultrathin insulating films. ACS Nano 9(5), 5318–5325 (2015)

    Google Scholar 

  34. B. Schuler, M. Persson, S. Paavilainen, N. Pavliček, L. Gross, G. Meyer, J. Repp, Effect of electron-phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Phys. Rev. B 91(23), 235443 (2015)

    Article  ADS  Google Scholar 

  35. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  36. J.T. Yates, Chemisorption on surfaces—an historical look at a representative adsorbate: carbon monoxide. Surf. Sci. 299, 731–741 (1994)

    Google Scholar 

  37. J. Welker, F.J. Giessibl, Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336(6080), 444–449 (2012)

    Article  ADS  Google Scholar 

  38. M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich, The force needed to move an atom on a surface. Science 319(5866), 1066–1069 (2008)

    Google Scholar 

  39. P. Deshlahra, J. Conway, E.E. Wolf, W.F. Schneider, Influence of dipole–dipole interactions on coverage-dependent adsorption: CO and NO on Pt(111). Langmuir 28(22), 8408–8417 (2012)

    Google Scholar 

  40. A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Molecule cascades. Science 298(5597), 1381–1387 (2002)

    Google Scholar 

Download references

Acknowledgements

We thank the financial support from AEI under project MAT2017-83273-R and from MINECO under projects MAT2014-54484-P and MDM-2014-0377. We thank Niko Pavliček, Bruno Schuler, Nikolaj Moll, Gerhard Meyer and Leo Gross for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Perez .

Editor information

Editors and Affiliations

Appendices

A DFT Calculation Details

All density functional theory (DFT) calculations were carried out using the projector augmented wave (PAW) method as implemented in VASP [35]. We have used the PBE XC functional supplemented by semi-empirical DFT-D3 van der Waals (vdW) interaction [31], a plane wave cutoff of 400 eV, and fine electronic convergence (\(E_{\text {SCF}} = 10^{-4}\) eV) on all calculations. Furthermore,

  • All volumetric data was calculated on an uniform mesh with 0.075 Å grid spacing with the dipole correction applied to the z-direction. For the electrostatic potentials, a uniform 1D filter in the z-direction was applied to the volumetric data in order to eliminate high frequency noise (\(\lambda = 2\) grid points). The z-component of the E-fields shown in Sects. 15.2, 15.3, 15.4 and 15.7 was calculated from the gradient of the electrostatic potential.

  • Calculations used to fit the model (Sect. 15.5) used a \(3\times 3\times 1\) grid for sampling the Brillouin zone.

  • Sect. 15.5.2 calculations used the \(\varGamma \) point for the sampling of the Brillouin zone and ionic relaxations were considered converged when forces were less than \(10^{-2}\) eV/Å.

  • Sect. 15.5.3 calculations used a \(7\times 7\times 1\) grid for the sampling of the Brillouin zone and ionic relaxations were considered converged when forces were less than \(10^{-2}\) eV/Å.

B Parametrization of the Short Range Interactions

In order to parametrize the Morse potentials of the SR interaction, we perform static DFT force calculations on a clean NaCl bilayer on a 4-layer Cu(100) slab probed by a CO molecule on a \(2\sqrt{2} \times 2\sqrt{2}\) unit cell with a large vacuum (total cell size 15.9 Å  \(\times \) 15.9 Å \(\times \) 42 Å) (see Fig. 15.19a, b). Calculations were carried out in VASP [35], using the PBE XC functional supplemented by semi-empirical DFT-D3 van der Waals (vdW) interaction [31], a plane wave cutoff of 400 eV, a fine electronic convergence (\(E_{\text {SCF}} = 10^{-4}\) eV), and a \(7 \times 7 \times 1\) grid for the sampling of the Brillouin zone. Force curves were calculated with a 25 pm interval on 3 different sites: Cl, Na, and bridge (defined as the midpoint between a Na and Cl site). Figure 15.19c, d show the total and vdW forces obtained for those three sites (red, blue, and yellow markers correspond to the Cl, Na, and bridge sites in Fig. 15.19c, d. The electrostatic interaction is calculated, as in the model, from,

$$V_{\text {ES}}=\int {\rho _{\text {CO}}\varPhi _{\text {sample}} d\mathbf {r}^3}$$

(see Fig. 15.19e). Finally, the short range (SR) contribution (Fig. 15.19f) is obtained from

$$V^\text {DFT}_\text {SR} = V^\text {DFT}_\text {total} + V^\text {DFT}_\text {vdW} + V_\text {ES}$$

and fitted, through a least-squares method, to a sum of Morse potentials,

$$V_{\text {SR}} = \sum _{i=\text {Na,Cl,ions}}{D^i_e \left( (1-\exp {[-a^i(|\mathbf {x}-\mathbf {x}^i|-r^i_e)]})^2-1\right) },$$

where \(| \mathbf {x} - \mathbf {x}^i |\) is the distance between the O atom in the CO probe and the corresponding ion, \(D_e^i\) (well depth), \(a^i\) (that controls the inverse of the width of the potential), and \(r_e^i\) (equilibrium bond distance) are the species dependent parameters determined by the fitting, and the sum extends to all the atoms of the ionic surface.

Fig. 15.19
figure 19

a Front view of the relaxed clean NaCl/Cu(100) surface used in the DFT spectroscopy calculations. b Lateral view of the surface along with the CO probe. c Total, d vdW, e electrostatics (ES), and f short range (SR) forces for Cl (blue), Na (red), bridge (yellow) and hollow (gray) sites. Markers correspond to DFT data while the lines to calculations with the model. The Cl, Na, and bridge sites were used in the parametrization of the SR interaction, while the hollow site is calculated to show the ability of the model to reproduce the DFT results on any point of the surface

Table 15.1 Morse potential parameters fitted from DFT calculations. These parameters provide an excellent fit to the DFT force curves

Results for the total, vdW, electrostatic, and short range forces on the 3 sites are plotted on Fig. 15.19c–f. Bullets correspond to the values obtained from DFT calculations and lines represent the results from the model. Note that the DFT-D3 theory is used to estimate the vdW interaction both in the DFT calculations and in the model; hence, markers and lines of Fig. 15.19d are identical. For the three sites, forces calculated with DFT and the model are in excellent agreement. Table 15.1 shows the fitted parameters.

In order to assess the transferability of our model to sites different from the ones included in the SR fitting, we have tested the predictions of the model for a new site: a hollow position (defined as the midpoint between two Cl atoms). Figure 15.19 shows the excellent agreement between the DFT calculations (grey markers) and the model (grey lines) on this site.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ellner, M., Pou, P., Perez, R. (2018). The Electrostatic Field of CO Functionalized Metal Tips. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_15

Download citation

Publish with us

Policies and ethics