Thermoelectric Power Measurements on Duplex Stainless Steel Weldments

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

In our research bead-on-plate autogenous TIG welds were prepared on 2 mm thick UNS S32205 (EN 1.4462) duplex stainless steel sheets using different shielding gases: argon, and argon+nitrogen shielding with +2 vol. % N2, +5 vol. % N2 and +10 vol. % N2 nitrogen content beside argon. The welds were reheated in argon atmosphere up to 1250 °C peak temperature, using Gleeble® 1500 thermomechanical simulator. Both in the as-welded and reheated state the austenite fraction, total nitrogen content and thermoelectric power (TEP) values were measured. Correlation was found between the austenite content in the weld metal, the total nitrogen content in the wed metal and the TEP value as a function of the used shielding gases and the subsequent reheating thermal cycle. We also attempted to differentiate between the total dissolved nitrogen and interstitial atomic nitrogen. This work is a part of an extended project in order to understand the sometimes controversial effects of nitrogen on duplex stainless steel welding.

Keywords

Duplex stainless steel Nitrogen in shielding gas  Thermoelectric power 

Notes

Acknowledgments

This paper has been supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences grant number: BO/00196/16/6 and by the National Research, Development and Innovation Office - NKFIH, OTKA PD 120865 (K. Májlinger).

References

  1. 1.
    Hertzman, S., Charles, J.: On the effect of nitrogen on duplex stainless steels. Rev. Métallurgie 108, 413–425 (2011)CrossRefGoogle Scholar
  2. 2.
    Kalácska, E., Májlinger, K., Varbai, B.: Gas tungsten arc welding of different high strength austenitic stainless steel grades. In: YPIC 2017: 3rd Young Welding Professionals International Conference, pp. 20–26, 120 p. (2017)Google Scholar
  3. 3.
    Kokawa, H.: Nitrogen absorption and desorption by steels during arc and laser welding. Weld. Int. 18, 277–287 (2004)CrossRefGoogle Scholar
  4. 4.
    Sales, A.M., Westin, E.M., Jarvis, B.L.: Effect of nitrogen in shielding gas of keyhole GTAW on properties of duplex and superduplex welds. Weld. World. 61, 1133–1140 (2017)CrossRefGoogle Scholar
  5. 5.
    Westin, E.M., Johansson, M.M., Pettersson, R.F.A.: Effect of nitrogen-containing shielding and backing gas on the pitting corrosion resistance of welded lean duplex stainless steel LDX 2101(R) (EN 1.4162, UNS S32101). Weld. World. 57, 467–476 (2013)CrossRefGoogle Scholar
  6. 6.
    Matsunaga, H., Sato, Y.S., Kokawa, H., Kuwana, T.: Effect of nitrogen on corrosion of duplex stainless steel weld metal. Sci. Technol. Weld. Join. 3, 225–232 (1998)CrossRefGoogle Scholar
  7. 7.
    Balogh, A., Török, I., Gáspár, M., Juhász, D.: Present state and future of advanced high strength steels. Prod. Process. Syst. 5, 79–90 (2012)Google Scholar
  8. 8.
    ASTM A262-15 standard practices for detecting susceptibility to intergranular corrosion in austenitic stainless steels (2015)Google Scholar
  9. 9.
    Toit, M., Pistorius, P.: Nitrogen control during autogenous arc welding of stainless steel- part 1: experimental observations. Weld. J. 47, 219–224 (2003)Google Scholar
  10. 10.
    de Salazar, J.M.G., Soria, A., Barrena, M.I.: The effect of N2 addition upon the MIG welding process of duplex steels. J. Mater. Sci. 42, 4892–4898 (2007)CrossRefGoogle Scholar
  11. 11.
    Dong, W., Kokawa, H., Tsukamoto, S., Sato, Y.S., Ogawa, M.: Mechanism governing nitrogen absorption by steel weld metal during laser welding. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 35, 331–338 (2004)CrossRefGoogle Scholar
  12. 12.
    Palmer, T.A., Debroy, T.: Numerical modeling of enhanced nitrogen dissolution during gas tungsten Arc welding. Metall. Mater. Trans. B 31, 1371–1385 (2000)CrossRefGoogle Scholar
  13. 13.
    Westin, E.: Microstructure and properties of welds in the lean duplex stainless steel LDX 2101 (2010)Google Scholar
  14. 14.
    Palmer, T.A., Elmer, J.W., Babu, S.S.: Observations of ferrite/austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds using time resolved X-ray diffraction. Mater. Sci. Eng., A 374, 307–321 (2004)CrossRefGoogle Scholar
  15. 15.
    Woo, I., Kikuchi, Y.: Weldability of high nitrogen stainless steel. ISIJ Int. 42, 1334–1343 (2002)CrossRefGoogle Scholar
  16. 16.
    Alcantara, A.S., Fábián, E.R., Furkó, M., Fazakas, É., Dobránszky, J., Berecz, T.: Corrosion resistance of TIG welded joints of stainless steels. Mater. Sci. Forum 885, 190–195 (2017)CrossRefGoogle Scholar
  17. 17.
    Geng, S., Sun, J., Guo, L., Wang, H.: Evolution of microstructure and corrosion behavior in 2205 duplex stainless steel GTA-welding joint. J. Manuf. Process. 19, 32–37 (2015)CrossRefGoogle Scholar
  18. 18.
    Fábián, E.R., Dobránszky, J., Csizmazia, J., Ott, R.: Effect of laser beam welding on the microstructure of duplex stainless steels. Mater. Sci. Forum 885, 245–250 (2017)CrossRefGoogle Scholar
  19. 19.
    Hosseini, V.A., Hurtig, K., Karlsson, L.: Effect of multipass TIG welding on the corrosion resistance and microstructure of a super duplex stainless steel. Mater. Corros. 68, 405–415 (2017)CrossRefGoogle Scholar
  20. 20.
    Hosseini, V.A., Wessman, S., Hurtig, K., Karlsson, L.: Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel. Mater. Des. 98, 88–97 (2016)CrossRefGoogle Scholar
  21. 21.
    Zhang, Z., Jing, H., Xu, L., Han, Y., Zhao, L.: Investigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods. Mater. Des. 109, 670–685 (2016)CrossRefGoogle Scholar
  22. 22.
    Damian, J.K.: Some pitfalls in welding of duplex stainless steels. Soldag. Inspeção. 15, 336–343 (2010)Google Scholar
  23. 23.
    Garzón, C.M., Ramirez, A.J.: Growth kinetics of secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel. Acta Mater. 54, 3321–3331 (2006)CrossRefGoogle Scholar
  24. 24.
    Ramirez, A.J., Lippold, J.C., Brandi, S.D.: The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metall. Mater. Trans. A 34, 1575–1597 (2003)CrossRefGoogle Scholar
  25. 25.
    Ramirez, A.J., Brandi, S.D., Lippold, J.C.: Secondary austenite and chromium nitride precipitation in simulated heat affected zones of duplex stainless steels. Sci. Technol. Weld. Join. 9, 301–313 (2004)CrossRefGoogle Scholar
  26. 26.
    Berecz, T., Fazakas, É., Mészáros, I., Sajó, I.: Decomposition kinetics of ferrite in isothermally aged SAF2507 type duplex stainless steel. J. Mater. Eng. Perform. 24, 4777–4788 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhang, Z., Jing, H., Xu, L., Han, Y., Zhao, L., Zhang, J.: Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints. Appl. Surf. Sci. 394, 297–314 (2017)CrossRefGoogle Scholar
  28. 28.
    Ciuffini, A., Barella, S., Di Cecca, C., Gruttadauria, A., Mapelli, C., Mombelli, D.: Isothermal austenite–ferrite phase transformations and microstructural evolution during annealing in super duplex stainless steels. Metals (Basel) 7, 368 (2017)CrossRefGoogle Scholar
  29. 29.
    Chehuan, T., Dreilich, V., de Assis, K.S., de Sousa, F.V.V., Mattos, O.R.: Influence of multipass pulsed gas metal arc welding on corrosion behaviour of a duplex stainless steel. Corros. Sci. 86, 268–274 (2014)CrossRefGoogle Scholar
  30. 30.
    Muthupandi, V., Bala Srinivasan, P., Seshadri, S.K., Sundaresan, S.: Effect of nitrogen addition on formation of secondary austenite in duplex stainless steel weld metals and resultant properties. Sci. Technol. Weld. Join. 9, 47–52 (2004)CrossRefGoogle Scholar
  31. 31.
    Westin, E.M., Johansson, M.M., Bylund, L.-Å.A., Pettersson, R.F.A.: Effect on microstructure and properties of super duplex stainless steel welds when using backing gas containing nitrogen and hydrogen. Weld. World. 58, 347–354 (2014)CrossRefGoogle Scholar
  32. 32.
    Pettersson, R., Johansson, M., Westin, E.M.: Corrosion performance of welds in duplex, superduplex and lean duplex stainless steels corrosion performance of welds in duplex, superduplex and lean duplex stainless steels. Corros. Manag. Appl. Eng. 1, 1–8 (2014)Google Scholar
  33. 33.
    Sicupira, D.C., Frankel, G.S., de FC Lins, V.: Pitting corrosion of welds in UNS S32304 lean duplex stainless steel. Mater. Corros. 67, 440–448 (2016)CrossRefGoogle Scholar
  34. 34.
    Kleber, X., Verdu, C., Cazottes, S., Dobranszky, J., Ginsztler, J., Cedex, V.: Aging behaviour of lean duplex steel using thermoelectric power measurements. In: 8th Duplex Stainl. Steels Conference 2101 (2010)Google Scholar
  35. 35.
    Ortiz, N., Curiel, F.F., López, V.H., Ruiz, A.: Evaluation of the intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with thermoelectric power measurements. Corros. Sci. 69, 236–244 (2013)CrossRefGoogle Scholar
  36. 36.
    Dobránszky, J., Ginsztler, J.: Microstructural stability of duplex stainless steel weldments. Mater. Sci. Forum 561–565, 2119–2122 (2007)CrossRefGoogle Scholar
  37. 37.
    Maetz, J.-Y., Cazottes, S., Verdu, C., Kleber, X.: Precipitation and phase transformations in 2101 lean duplex stainless steel during isothermal aging. Metall. Mater. Trans. A 47, 239–253 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations