Advertisement

MIG Welding and MIG Brazing of Different Austenitic Stainless Steel Grades

  • Eszter Kalácska
  • Balázs Varbai
  • Kornél Májlinger
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Weldability aspects of different Cr-Mn alloyed high strength austenitic steel grades were investigated in our present work and compared to conventional Cr-Ni alloyed grades. In our experiments two Cr-Mn alloyed high strength (+N alloying) austenitic steel grades (1.4371 and 1.4376) and as comparison; Cr-Ni alloyed high strength (1.4318) and normal strength (1.4301) austenitic steel grades were used. Similar and dissimilar joints were made with metal inert gas (MIG) welding and MIG brazing.

The produced butt joints were evaluated according to their tensile- hardness- and microstructural properties. The different steel grades showed quite different behavior regarding the mechanical and microstructural properties.

The MIG brazed specimen showed higher weld metal hardness than the welded ones, the hardness values decreased with decreasing Mn-content in the base metals. In case of MIG welding also the tensile strengths and the fracture elongation of the joints decreased with decreasing Mn-content.

Keywords

MIG welding MIG brazing Austenitic stainless steel 

Notes

Acknowledgments

This research was supported by Aperam and Outokumpu Distribution Hungary Kft. with the steel materials. Special thanks to Tamás Törköly from the Dunakeszi Járműjavító Kft. for technical support with the MIG-brazing.

This paper has been supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences grant number: BO/00196/16/6 and by the National Research, Development and Innovation Office - NKFIH, OTKA PD 120865 (K. Májlinger).

References

  1. 1.
    Chater, J.: What prospects for stainless steel in 2016? Stainl. Steel World 1/2, 1–5 (2016)Google Scholar
  2. 2.
    Charles, J.: The new 200 series: an alternative answer to Ni surcharges? Stainl. Steel World 5, 23–33 (2007)Google Scholar
  3. 3.
    BSSA: 200 Series Stainless Steel. Stainless Steel Industry 10, 6–8 (2006)Google Scholar
  4. 4.
    Charles, J., et al.: A new European 200 series standard to substitute 304 austenitics. Rev. Métallurgie 106, 90–98 (2009)CrossRefGoogle Scholar
  5. 5.
    Speidel, M.O.: Nitrogen containing austenitic stainless steels. Materwiss. Werksttech. 37, 875–880 (2006)CrossRefGoogle Scholar
  6. 6.
    ISSF. ‘New 200-series’ steels: An opportunity or a threat to the image of stainless steel? http://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSFNew200seriessteelsAnopportunityorathreat_EN.pdf. Accessed 21 Dec 2017
  7. 7.
    Charles, J., et al.: Austenitic chromium-manganese stainless steels – a European approach. Mater. Appl. Ser. 12, 1–17 (2012)Google Scholar
  8. 8.
    Pistorius, P.C., Toit, M.: Low-nickel austenitic stainless steels: metallurgical constraints. In: Vartiainen, A. (ed.) Twelfth International Ferroalloys Congress; Sustainable Future 2010, pp. 911–918. Outotec Oyj, Helsinki (2010)Google Scholar
  9. 9.
    Mathur, N.C.: Bright future dawning for India’s stainless industry. Stainl. Steel World 11, 1–4 (2015)Google Scholar
  10. 10.
    McIntyre, J.: India’s success story: world’s 2nd largest stainless steel producer. Stainless Steel World 11, 1–4 (2016)Google Scholar
  11. 11.
    Kerr, J., Paton, R.: Preliminary investigations of low-nickel stainless steels for structural applications. In: Tenth International Ferroalloys Congress 2004, pp. 757–765 South African Institute of Mining and Metallurgy, Cape Town (2004)Google Scholar
  12. 12.
    Khobragade, N.N., et al.: Corrosion behaviour of chrome-manganese austenitic stainless steels and AISI 304 stainless steel in chloride environment. Trans. Indian Inst. Met. 67, 263–273 (2014)CrossRefGoogle Scholar
  13. 13.
    Schwind, M., et al.: Properties of various low-nickel stainless steels in comparison to AISI 304. Stainl. Steel World 3, 66–77 (2008)Google Scholar
  14. 14.
    Scavino, G., et al.: Plastic localization phenomena in a Mn-alloyed austenitic steel. Metall. Mater. Trans. A 41(6), 1493–1501 (2010)CrossRefGoogle Scholar
  15. 15.
    D’Aiuto, F., et al.: Portevin - Le chatelier effect in a Mn-alloyed thermomechanically processed austenitic steel. In: 3rd International Conference on Thermomechanical Processing of Steels 2008. AIM, Padua (2008)Google Scholar
  16. 16.
    Firrao, D., et al.: Room temperature plastic flow localization in a Mn-alloyed austenitic steel. Mater. Sci. Forum 604–605, 139–146 (2009)Google Scholar
  17. 17.
    Espy, R.H.: Weldability of nitrogen-strengthened stainless steels. Weld. J. 6, 149–156 (1982)Google Scholar
  18. 18.
    Brooks, J.A.: Weldability of high N, high Mn austenitic stainless steel. Weld. Res. Suppl. 6, 189–195 (1975)Google Scholar
  19. 19.
    Vashishtha, H., et al.: Welding behaviour of low nickel chrome-manganese stainless steel. ISIJ Int. 54, 1361–1367 (2014)CrossRefGoogle Scholar
  20. 20.
    Vashishtha, H., et al.: Effect of austenitic fillers on microstructural and mechanical properties of ultra-low nickel austenitic stainless steel. Sci. Technol. Weld. Join. 21, 331–337 (2016)CrossRefGoogle Scholar
  21. 21.
    Bharwal, S., Vyas, C.: Weldability issue of AISI 202 SS (stainless steel) grade with GTAW process compared to AISI 304 SS grade. Int. J. Adv. Mech. Eng. 4, 695–700 (2014)Google Scholar
  22. 22.
    Chuaiphan, W., Srijaroenpramong, L.: Effect of welding speed on microstructures, mechanical properties and corrosion behavior of GTA-welded AISI 201 stainless steel sheets. J. Mater. Process. Technol. 214, 402–408 (2014)CrossRefGoogle Scholar
  23. 23.
    Mukherjee, M., et al.: Influence of modes of metal transfer on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals. Mater. Charact. 102, 9–18 (2015)CrossRefGoogle Scholar
  24. 24.
    Mukherjee, M., Pal, T.K.: Evaluation of microstructural and mechanical properties of Fe-16Cr-1Ni-9Mn-0.12 N austenitic stainless steel welded joints. Mater. Charact. 131, 406–424 (2017)CrossRefGoogle Scholar
  25. 25.
    Varol, F., et al.: Influence of current intensity and heat input in Metal Inert Gas-brazed joints of TRIP 800 thin zinc coated steel plates. Mater. Des. 52, 1099–1105 (2013)CrossRefGoogle Scholar
  26. 26.
    Quintino, L., et al.: MIG brazing of galvanized thin sheet joints for automotive industry. Mater. Manuf. Process. 21, 63–73 (2006)CrossRefGoogle Scholar
  27. 27.
    Iordachescu, D., et al.: Influence of shielding gases and process parameters on metal transfer and bead shape in MIG brazed joints of the thin zinc coated steel plates. Mater. Des. 27, 381–390 (2006)CrossRefGoogle Scholar
  28. 28.
    Basak, S., et al.: Corrosion behavior of MIG brazed and MIG welded joints of automotive DP600-GI steel sheet. J. Mater. Eng. Perform. 25, 5238–5251 (2016)CrossRefGoogle Scholar
  29. 29.
    Lepistö, J.S., Marquis, G.B.: MIG brazing as a means of fatigue life improvement. Weld. World 48, 28–40 (2004)CrossRefGoogle Scholar
  30. 30.
    Balogh, A., et al.: Present state and future of advanced high strength steels. J. Prod. Process. Syst. 5, 79–90 (2012)Google Scholar
  31. 31.
    Russo Spena, P., et al.: Dissimilar resistance spot welding of Q&P and TWIP steel sheets. Mater. Manuf. Process. 31(3), 291–299 (2016)CrossRefGoogle Scholar
  32. 32.
    Russo Spena, P., et al.: Effects of process parameters on spot welding of TRIP and quenching and partitioning steels. Steel Res. Int. 87(12), 1592–1600 (2016)CrossRefGoogle Scholar
  33. 33.
    Broggiato, G.B., et al.: Full field strain measurement of dissimilar laser welded joints. Procedia Eng. 109, 356–363 (2015)CrossRefGoogle Scholar
  34. 34.
    Russo Spena, P., et al.: Investigation on resistance spot welding of TWIP steel sheets. Steel Res. Int. 86(12), 1480–1489 (2015)CrossRefGoogle Scholar
  35. 35.
    Kalácska, E., et al.: MIG-welding of dissimilar advanced high strength steel sheets. Mater. Sci. Forum 885, 80–85 (2017)CrossRefGoogle Scholar
  36. 36.
    Sejč, P., Kubíček, R.: MIG brazing of 304L type stainless steel using CuSi3 and CuSi3MnAl brazing wire. Kov. Mater. 53, 365–375 (2015)Google Scholar
  37. 37.
    Berczeli, M., Weltsch, Z.: Experimental studies of different strength steels MIG brazed joints. Per. Pol. Transp. Eng. 46, 1–6 (2018)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eszter Kalácska
    • 1
  • Balázs Varbai
    • 1
  • Kornél Májlinger
    • 1
  1. 1.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations