Advertisement

Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants

  • Sonia Mbarki
  • Oksana Sytar
  • Artemio Cerda
  • Marek Zivcak
  • Anshu Rastogi
  • Xiaolan He
  • Aziza Zoghlami
  • Chedly Abdelly
  • Marian Brestic
Chapter

Abstract

Soil salinization represents one of the major limiting factors of future increase in crop production through the expansion or maintaining of cultivation area in the future. High salt levels in soils or irrigation water represent major environmental concerns for agriculture in semiarid and arid zones. Recent advances in research provide great opportunities to develop effective strategies to improve crop salt tolerance and yield in different environments affected by the soil salinity. It was clearly demonstrated that plants employ both the common adaptative responses and the specific reactions to salt stress. The review of research results presented here may be helpful to understand the physiological, metabolic, developmental, and other reactions of crop plants to salinity, resulting in the decrease of biomass production and yield. In addition, the chapter provides an overview of modern studies on how to mitigate salt stress effects on photosynthetic apparatus and productivity of crop plants with the help of phytohormones, glycine betaine, proline, polyamines, paclobutrazol, trace elements, and nanoparticles. To understand well these effects and to discover new ways to improve productivity in salinity stress conditions, it is necessary to utilize efficiently possibilities of promising techniques and approaches focused on improvement of photosynthetic traits and photosynthetic capacity, which determines yield under salt stress conditions.

Keywords

Salinity Photosynthesis apparatus Yield Adaptative response 

Abbreviations

ABA

Abscisic acid

APX

Ascorbate peroxidase

BRs

Brassinosteroids

CAT

Catalase

DW

Dry weight

EBL

24-Epibrassinolide

FW

Fresh weight

GPX

Guaiacol peroxidase

JA

Jasmonic acid

MeJA

Jasmonate

MDHAR

Monodehydroascorbate reductase

MDA

Malonic dialdehyde

NPs

Nanoparticles

Pn

Photosynthetic rate

PAs

Polyamines

RWC

Relative water content

SA

Salicylic acid

SOD

Superoxide dismutase

WUE

Water use efficiency

References

  1. Abdelly C (2006) Caractérisation des halophytes pour le dessalement des sols salins et letraitement des eaux salines. Rapport d’activités 2007. Centre de biotechnologie à la technopoledeBorj-Cedria, Tunisie, pp 28–31Google Scholar
  2. Abdi N, Wasti S, Slama A, Ben Salem M, El Faleh M, Mallek-Maalej E (2016) Comparative study of salinity effect on some tunisian barley cultivars at germination and early seedling growth stages. J Plant Physiol Pathol 4(3):1–9. https://doi.org/10.4172/2329-955X.1000151 CrossRefGoogle Scholar
  3. Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290CrossRefGoogle Scholar
  4. Ahmad M, Niazi BH, Zaman B, Athar M (2005) Varietals differences in agronomic performance of six wheat varieties grown under saline field environment. Int J Environ Sci Technol 2(1):49–57Google Scholar
  5. Ahmad M, Zahir Zahir A, Nazli F, Akram F, Arshad MKM (2013) Effectiveness of halo-tolerant, auxin producing pseudomonas and rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.) Braz. J Microbiol 44(4):1341–1348Google Scholar
  6. Aissaoui HS, Reffas S (2007) Effet de stress salin sur la productivité de populations sahariennes locales de la luzerne (Medicago sativa L.), Université Kasdi Merbah Ouargla.Google Scholar
  7. Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9(2):1–20. https://doi.org/10.1093/aobpla/plx009 CrossRefGoogle Scholar
  8. Alem C, Labhilili M, Brahmi K, Jlibene M, Nasrallah N, Filali-Maltouf A (2002) Adaptations hydrique et photosynthétique du blé dur et du blé tendre au stress salin. C R Biologies 325(11):1097–1109PubMedCrossRefGoogle Scholar
  9. Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 68(4):723–735CrossRefGoogle Scholar
  10. Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72:1387–1392PubMedCrossRefGoogle Scholar
  11. Al-Khateeb SA (2006) Effect of calcium/sodium ratio on growth and ion relations of alfalfa (Medicago sativa L.) seedling grown under saline condition. J Agron 5(2):175–181CrossRefGoogle Scholar
  12. Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453PubMedPubMedCentralCrossRefGoogle Scholar
  13. Allen SG, Dobrenz AK, Scharnhorst M, Stoner JEA (1985) Heritability of NaCl tolerance in germinating alfalfa seeds. Agron J 77:99–105CrossRefGoogle Scholar
  14. Almutairi ZM (2016a) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum L.) during germination. Int J Agri Biol 18(2):449–457. https://doi.org/10.17957/IJAB/15.0114 CrossRefGoogle Scholar
  15. Almutairi ZM (2016b) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics Journal 9(1):106–114Google Scholar
  16. Anjum SA, Xie X, Wang L et al (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agr Res 6:2026–2032Google Scholar
  17. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  18. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–6CrossRefGoogle Scholar
  19. Askari-Khorasgani O, Emadi S, Mortazaienezhad F, Pessarakli M (2017) Differential responses of three chamomile genotypes to salinity stress with respect to physiological, morphological, and phytochemical characteristics. J Plant Nutr 40(18):2619–2630CrossRefGoogle Scholar
  20. Askary M, Talebi SM, Amini F, Ali D, Bangan B (2017) Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija 63(1):65–75CrossRefGoogle Scholar
  21. Askary M, Talebi SM, Amini F, Bangan ADB (2016) Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environ Exp Biol 14:27–32. https://doi.org/10.22364/eeb.14.05 CrossRefGoogle Scholar
  22. Asrar H, Hussain T, Midhat S, Hadi S, Gul B, Nielsen BL, Khan MA (2017) Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) staph. Environ Exp Bot 135:86–95CrossRefGoogle Scholar
  23. Athar H-U-R, Zafar ZU, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agro Crop Sci 201:428–442. https://doi.org/10.1111/jac.12120 CrossRefGoogle Scholar
  24. Atkinson MR, Findlay CP, Hope AB, Pitman MG, Saddler HDW, West KR (1967) Salt regulation in the mangroves Rhizophora mucronata Lam. and Aegialitis annulata R. Br Aust J Biol Sci 20:589–599CrossRefGoogle Scholar
  25. Aziz I, Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aqua Bot 70(3):259–268CrossRefGoogle Scholar
  26. Azri W, Chambon C, Herbette S, Brunel N, Coutand C, Leplé JC, Ben Rejeb I, Ammar S, Julien JL, Roeckel-Drevet P (2009) Proteome analysis of apical and basal regions of poplar stems under gravitropic stimulation. Physiol Plant 136:193–208. https://doi.org/10.1111/j.1399-3054.2009.01230.x PubMedCrossRefGoogle Scholar
  27. Ballesteros E, Blumwald E, Donaire JP, Belver A (1997) Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiol Plant 99:328–334. https://doi.org/10.1111/j.1399-3054.1997.tb05420.x CrossRefGoogle Scholar
  28. Banon S, Ochoa J, Martinez JA, Fernandez JA, Franco JA, Sanchez-Blanco MJ, Alarcon JJ, Morales MA (2003) Paclobutrazol as an aid to reducing the effects of salt stress in Rhamnus alaternus plants. Acta Hortic 609:263–268Google Scholar
  29. Barhoumi Z, Djebali W, Smaoui A, Chaïbi W, Abdelly C (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164(7):842–850PubMedCrossRefGoogle Scholar
  30. Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 17:659–667. https://doi.org/10.1111/j.1365 CrossRefGoogle Scholar
  31. Belkheiri O, Mulas M (2013) The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ Exp Bot 86:17–28CrossRefGoogle Scholar
  32. Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss S, Ben Abdullah F (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agricult Food Chem 58:416–422CrossRefGoogle Scholar
  33. Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899Google Scholar
  34. Ben Hamed K, Ellouzi H, Talbi-Zribi O, Hessini K, Slama I, Ghnaya T, Munné Bosch S, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40(9):883–896. https://doi.org/10.1071/FP13074 Google Scholar
  35. Ben Hamed KB, Castagna A, Salem E, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul 53:185–194. https://doi.org/10.1007/s10725-007-9217-8 CrossRefGoogle Scholar
  36. Ben Hamed KB, Chibani F, Abdelly C, Magne C (2014) Growth, sodium uptake and antioxidant responses of coastal plants differing in their ecological status under increasing salinity. Biologia 69(2):193–201. https://doi.org/10.2478/s11756-013-0304-1 CrossRefGoogle Scholar
  37. Bennaceur M, Rahmoune C, Sdiri H, Meddhi ML, Selmi M (2001) Effet du stress salin sur la germination, la croissance et la production en grains de quelques variétés maghrébines de blé. Sècheresse 12(3):167–174Google Scholar
  38. Benzarti M, Ben Rejeb K, Debez A, Messedi D, Abdelly C (2012) Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol Plant 34:1679–1688CrossRefGoogle Scholar
  39. Benzon HRL, Rubenecia MRU, Ultra VU, Lee SC (2015) Nano-fertilizer affects the growth, development, and chemical properties of rice. IJAAR 7(1):105–117Google Scholar
  40. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oik S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110:205–254CrossRefGoogle Scholar
  41. Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110:205–254CrossRefGoogle Scholar
  42. Blaha G, Stelzl U, Spahn CM, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309PubMedCrossRefGoogle Scholar
  43. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434PubMedCrossRefGoogle Scholar
  44. Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ 73:101–115CrossRefGoogle Scholar
  45. Boscaiu M, Estrelles E, Soriano P, Vicente O (2005) Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia. Biol Plant 49:141–143CrossRefGoogle Scholar
  46. Botella MA, Quesada MA, Kononowicz A, Bressan RA, Hasegawa PM, Valpuesta V (1994) Characterization and in situ localization of a salt induced tomato peroxidase gene. Plant Mol Biol 25:105–114PubMedCrossRefGoogle Scholar
  47. Brestic M, Zivcak M (2013) PSII fluorescence techniques in drought and high temperature stress signal measurement of crop plants: protocols and applications. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, India, pp 87–113. https://doi.org/10.1007/978-81-322-0807-5_4 CrossRefGoogle Scholar
  48. Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5:287–292Google Scholar
  49. Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187(3):335–347PubMedCrossRefGoogle Scholar
  50. Bruns S, Hecht-Buchholz C (1990) Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various development stages. Potato Res 33:33–41. https://doi.org/10.1007/BF02358128 CrossRefGoogle Scholar
  51. Bueno M, Lendínez ML, Aparicio C, Cordovilla MP (2017) Germination and growth of Atriplex prostrata and Plantago coronopus: two strategies to survive in saline habitats. Flora 227:56–63CrossRefGoogle Scholar
  52. Cao Z, Rossi L, Stowers C, Zhang W, Lombardini L, Ma X (2017) The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ Sci Pollut Res Int 25(1):930–939. https://doi.org/10.1007/s11356-017-0501-5 PubMedCrossRefGoogle Scholar
  53. Chapman VJ (1960) Salt marshes and salt deserts of the world. Leonard Hill, LondonGoogle Scholar
  54. Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86:247–260CrossRefGoogle Scholar
  55. Chaudhuri K, Choudhuri M (1997) Effects of short-term NaCl stress on water relations and gas exchange of two jute species. Biol Plant 40:373. https://doi.org/10.1023/A:1001013913773 CrossRefGoogle Scholar
  56. Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefGoogle Scholar
  57. Chaves MM, Earl HJ, Flexas J, Loreto F, Medrano H (2011) Photosyn- thesis under water stress, flooding and salinity. In: Terrestrial photosynthesis in a changing environment. Cambridge University Press pp 49–104Google Scholar
  58. Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87(3):547–550PubMedPubMedCentralCrossRefGoogle Scholar
  59. Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206(2):557–570. https://doi.org/10.1111/nph.13217 PubMedCrossRefGoogle Scholar
  60. Chen Q, Goldstein I, Jiang W (2010) Payoff complementarities and financial fragility: evidence from mutual fund outflows. J Financ Econ 97(2):239–262CrossRefGoogle Scholar
  61. Chen TW, Kahlen K, Stützel H (2015) Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitation to photosynthesis. Plant Cell Environ 38:1528–1542. https://doi.org/10.1111/pce.12504 PubMedCrossRefGoogle Scholar
  62. Cooil BJ, de la Fluente RK, de la Pena RS (1965) Absorption and transport of sodium and potassium in squash. Plant Physiol 40:625–633PubMedPubMedCentralCrossRefGoogle Scholar
  63. Dąbrowski P, Baczewska AH, Pawluśkiewicz B, Paunov M, Alexantrov V, Goltsev V, Kalaji MH (2016) Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J Photochem Photobiol B 157:22–31. https://doi.org/10.1016/j.jphotobiol.2016.02.001 PubMedCrossRefGoogle Scholar
  64. Dąbrowski P, Kalaji MH, Baczewska AH, Pawluśkiewicz B, Mastalerczuk G, Borawska-Jarmułowicz B, Paunov M, Goltsev V (2017) Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. J Lumin 183:322–333. https://doi.org/10.1016/j.jlumin.2016.11.031 CrossRefGoogle Scholar
  65. De Oliveira VP, Marques EC, de Lacerda CF, Prisco JT, Gomes-Filho E (2013) Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development. Afr J Agric Res 8:660–670Google Scholar
  66. Debez A, Hamed KB, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 262:179–189CrossRefGoogle Scholar
  67. Debez A, Koyro HW, Grignon C, Abdelly C, Huchzermeyer B (2008) Relationship be-tween the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. Physiol Plant 133:373–385PubMedCrossRefGoogle Scholar
  68. Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540CrossRefGoogle Scholar
  69. Demiral IT (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1100PubMedCrossRefGoogle Scholar
  70. Dickison WC (2000) Integrative plant anatomy, 1st edn. Harcount Academic, San DiegoGoogle Scholar
  71. Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143. https://doi.org/10.1111/j.1399-3054.2011.01450.x PubMedCrossRefGoogle Scholar
  72. Ellouzi H, Hamed KB, Hernández I, Cela J, Müller M, Magné C, Abdelly C, Munné-Bosch S (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240(6):1299–1317. https://doi.org/10.1007/s00425-014-2154-7 PubMedCrossRefGoogle Scholar
  73. El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017) Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8:1751–1773. https://doi.org/10.4236/ajps.2017.88120 CrossRefGoogle Scholar
  74. Elzam OE, Epstein E (1969) Salt relations of two grass species differing in salt tolerance. II kinetics of the absorption of K, Na and Cl by their excised roots. Agrochimica 13:196–206Google Scholar
  75. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  76. Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, New YorkGoogle Scholar
  77. FAO (2000) Global network on integrated soil management for sustainable use of salt-affected soils. Country Specific Salinity Issues— Iran.FAO, Rome. Available at http://www.fao.org/ag/agl/agll/spush/degrad.asp?country¼iran
  78. FAO (2015) FAO cereal supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/
  79. FAO/IIASA/ISRIC/ISS-CAS/JRC (2008) Harmonized world soil database (version 1.0). FAO, RomeGoogle Scholar
  80. Fathi A, Zahedi M, Torabian S (2017) Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. J Plant Nutr 40(19):2745–2755. https://doi.org/10.1080/00103624.2013.863911 CrossRefGoogle Scholar
  81. Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331PubMedPubMedCentralCrossRefGoogle Scholar
  82. Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant, Cell and Environ 14:319–325CrossRefGoogle Scholar
  83. Fukuda A, Yazaki Y, Ishikawa T, Koike S, Tanaka Y (1998) Na+ /H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol 39:196–201CrossRefGoogle Scholar
  84. Gale J (1975) The combined effect of environmental factors and salinity on plant growth. In: Book: plants in saline environ, pp 186–192. https://doi.org/10.1007/978-3-642-80929-3_12 CrossRefGoogle Scholar
  85. Garbarino J, Dupont FM (1989) Rapid induction of na/h exchange activity in barley root tonoplast. Plant Physiol 89(1):1–4PubMedPubMedCentralCrossRefGoogle Scholar
  86. García-Caparrós P, Llanderal A, Pestana M, Correia PJ, Lao MT (2017) Lavandula multifida response to salinity: growth, nutrient uptake, and physiological changes. J Plant Nutr Soil Sci 180:96–104. https://doi.org/10.1002/jpln.201600062 CrossRefGoogle Scholar
  87. Gimenez C, Mitchell VJ, Lawlor DW (1992) Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiol 98(2):516–524PubMedPubMedCentralCrossRefGoogle Scholar
  88. Graan T, Boyer JS (1990) Very high CO2 partially restores photosynthesis in sunflower at low leaf water potentials. Planta 181:378–384PubMedCrossRefGoogle Scholar
  89. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  90. Grennan AK (2006) Abiotic stress in rice. An “omic” approach. Plant Physiol 140(4):1139–1141PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gu MF, Li N, Long XH, Brestic M, Shao HB, Li J, Mbarki S (2016) Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environment 62(7):314–320. https://doi.org/10.17221/771/2015-PSE CrossRefGoogle Scholar
  92. Gucci R, Lombardini L, Tattini M (1997) Analysis of water relations in leaves of two olive (Olea Europaea) cultivars differing in tolerance to salinity. Tree Physiol 17:13–21PubMedCrossRefGoogle Scholar
  93. Guerrier G (1984a) Relations entre la tolérance ou la sensibilité à la salinité lors de la germination des semences et les composantes de la nutrition en sodium. Biol Plant 26:22–28. https://doi.org/10.1007/BF02880421 CrossRefGoogle Scholar
  94. Guerrier G (1984b) Selectivité de fixation du sodium au niveau des embryons et des jeunes plantes sensible or tolerant au NaCl. Can J Bot 62:1791–1792CrossRefGoogle Scholar
  95. Gupta A, Berkowitz GA (1987) Osmotic adjustment, symplast volume, and nonstomatally mediated water stress inhibition of photosynthesis in wheat. Plant Physiol 85:1040–1047PubMedPubMedCentralCrossRefGoogle Scholar
  96. Gutterman Y (1993) Seed germination in desert plants. Adaptations of desert organisms. Springer-Verlag, BerlinCrossRefGoogle Scholar
  97. Hachicha M (2007) Les sols salés et leur mise en valeur en Tunisie. Science et changements planétaires/Sécheresse 18(1):45–50Google Scholar
  98. Hachicha M, Kahlaoui B, Khamassi N, Misle E, Jouzdan O (2017) Effect of electromagnetic treatment of saline water on soil and crops Journal of the Saudi Society of Agricultural Sciences (2017) In Press, Corrected Proof, Available on line 25 March 2016Google Scholar
  99. Hajihashemi S, Kiarostami K, Enteshari S, Saboora A (2006) The effects of salt stress and paclobutrazol on some physiological parameters of two salt-tolerant and salt-sensitive cultivars of wheat. Pakistan J Biol Sci 9(7):1370–1374CrossRefGoogle Scholar
  100. Hajlaoui H, El Ayeb N, Garrec JP, Denden M (2010) Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Ind Crop Prod 31(1):122–130CrossRefGoogle Scholar
  101. Hamdy A (1999) Active damping of vibrations in elevator cars. J Struct Control 6:53–100. https://doi.org/10.1002/stc.4300060105 CrossRefGoogle Scholar
  102. Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 7:plv004. https://doi.org/10.1093/aobpla/plv004 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Haouala F, Ferjani H, Ben El Hadj S (2007) Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et du chlore (Cl) dans les parties aériennes et les racines du ray-grass anglais et du chiendent. Biotechnol Agron Soc Environ 11(3):235–244Google Scholar
  104. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedCrossRefGoogle Scholar
  105. Hassani A, Dellal A, Belkhodja M, Kaid-Harche M (2008) Effect of salinity on water and some osmolytes in barley (Hordeum vulgare). Eur J Sci Res 23:61–69Google Scholar
  106. He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129(3):641–651. https://doi.org/10.1007/s00122-015-2655-1 PubMedCrossRefGoogle Scholar
  107. Heidari M, Sarani S (2012) Growth, biochemical components and ion content of chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. J Saudi Soc Agric Sci 11(1):37–42Google Scholar
  108. Hernández JA, Olmos E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105(2):151–167CrossRefGoogle Scholar
  109. Hernández JA, Campillo A, Jiménez A, Alarcón JJ, Sevilla E (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251CrossRefGoogle Scholar
  110. Hillel D, Vlek PLG (2005) The sustainability of irrigation. Adv Agron 87:55–84. https://doi.org/10.1016/S0065-2113(05)87002-6 CrossRefGoogle Scholar
  111. Hniličková H, Hnilička F, Martinková J, Kraus K (2017) Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environ 63:362–367CrossRefGoogle Scholar
  112. Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164:553–561PubMedCrossRefGoogle Scholar
  113. Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52(365):2245–2264PubMedCrossRefGoogle Scholar
  114. Hossain MS, Persicke M, AI ES, Kalinowski J, Dietz KJ (2017) Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot 68(21–22):5961–5976PubMedCrossRefGoogle Scholar
  115. Hristova V, Popova L (2002) Treatment with methyl jasmonate alleviates the effects of paraquat on photosynthesis in barley plants. Photosynthetica 40:567. https://doi.org/10.1023/A:1024356120016 CrossRefGoogle Scholar
  116. Hu Y, Schmidhalter U (2000) A two-pinhole technique to determine distribution profiles of relative elemental growth rates in the growth zone of grass leaves. Aust J Plant Physiol 27:1187–1190CrossRefGoogle Scholar
  117. Hu Y, Yu W, Liu T, Shafi M, Song L, Du X, Huang X, Yue Y, Wu J (2017) Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica 55(3):443–453. https://doi.org/10.1007/s11099-016-0658-z CrossRefGoogle Scholar
  118. Huez-López MA, Ulery April L, Samani Z, Picchioni G, Flynn RP (2011) Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: i. Growth and yield. Trop Subtrop Agroecosyst 14:137–147Google Scholar
  119. Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46. https://doi.org/10.1016/j.jplph.2015.12.011 PubMedCrossRefGoogle Scholar
  120. Itai C (1999) Role of phytohormones in plant responses to stresses. In: Lerner HR (ed) Plant responses to environmental stress. From phytohormones to genome reorganization. Marcel Dekker, New York, pp 287–301Google Scholar
  121. Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt-tolerant plants. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 897–909Google Scholar
  122. Jan SA, Bibi N, Shinwari KS, Rabbani MA, Ullah S, Qadir A, Khan N (2017) Impact of salt, drought, heat and frost stresses on morpho-biochemical and physiological properties of Brassica species: An updated review. J Rural Dev Agric 2(1):1–10Google Scholar
  123. Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734Google Scholar
  124. Jia J, Bai J, Gao H, Wen X, Zhang G, Cui B, Liu X (2017) In situ soil net nitrogen mineralization in coastal salt marshes (Suaeda salsa) with different flooding periods in a Chinese estuary. Ecol Indic 73:559–565CrossRefGoogle Scholar
  125. Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2017) Knockdown of an inflorescence meristem‐specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ https://doi.org/10.1111/pce.12947
  126. Kachout SS, Mansoura AB, Leclerc JC, Jaffel K, Rejeb MN, Ouerghi Z (2009) Effects of heavy metals on antioxidant activities of Atriplex hortensis and Atriplex rosea. J Appl Bot Food Qual 83(1):37–43Google Scholar
  127. Kafi M, Shariat JM, Moayedi A (2013) The sensitivity of grain sorghum (Sorghum bicolor L.) developmental stages to salinity stress: an integrated approach. J Agric Sci Tech 15(4):723–736Google Scholar
  128. Kafkai U (1991) Root growth under stress. Plant roots: the hidden half. Marcel Dekker, New York, USA, pp 375–391Google Scholar
  129. Kalaji H, Rastogi A, Živčák M, Brestic M et al (2018) Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica. https://doi.org/10.1007/s11099-018-0766-z
  130. Kalaji HM, Govindjee BK et al (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72CrossRefGoogle Scholar
  131. Kalaji MH, Goltsev V, Zuk-Golaszewska B, Zivcak M, Brestic M (2017) Chlorophyll fluorescence: understanding crop performance—basics and applications. Taylor and Francis, p 222. ISBN 9781498764490Google Scholar
  132. Kamiab F, Talaie A, Javanshah A, Khezri M, Khalighi A (2012) Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Annals Biol Res 3(12):5545–5551Google Scholar
  133. Kan X, Ren J, Chen T, Cui M, Li C, Zhou R, Zhang Y, Liu H, Deng D, Yin Z (2017) Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot 140:56–64CrossRefGoogle Scholar
  134. Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282CrossRefGoogle Scholar
  135. Kanwal H, Ashraf M, Shahbaz M (2011) Assessment of salt tolerance of some newly developed and candidate wheat (Triticum Aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak J Bot 43:2693–2699Google Scholar
  136. Kao RR, Gravenor MB, McLean AR (2001) Modelling the national scrapie eradication programme in the UK. Math Biosci 174:61–76PubMedCrossRefGoogle Scholar
  137. Karray-Bouraoui N (1995) Analyse des facteurs responsables de la tolérance au stress salin chez une céréale hybride le triticale: croissance, nutrition et métabolisme respiratoire. Thèse Doc. Univ, TunisGoogle Scholar
  138. Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311. https://doi.org/10.1111/pce.12157 PubMedCrossRefGoogle Scholar
  139. Keiper FJ, Chen DM, De Filippis LF (1998) Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys. J Plant Physiol 152(4-5):564–573CrossRefGoogle Scholar
  140. Khan AM, Ungar IA (1998) Germination of the salt tolerant shrub Suaeda fruticosa from. Pakistan: salinity and temperature responses. Seed Sci Technol 26:657–667Google Scholar
  141. Khan MA, Ungar IA, Showalter AM (2000) The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte Suadea fruticosa (L.) Forssk. J Arid Environ 45:73–84CrossRefGoogle Scholar
  142. Khan N, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1(1):1–8CrossRefGoogle Scholar
  143. Khavari-Nejad RA, Chaparzadeh N (1998) The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica 35(3):461–466CrossRefGoogle Scholar
  144. Khavari-Nejad R, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151. https://doi.org/10.1023/A:1006846504261 CrossRefGoogle Scholar
  145. Khunpon B, Chaum S, Faiyue B, Uthaibutra J, Saengnil K (2017) Influence of paclobutrazol on growth performance, photosynthetic pigments, and antioxidant efficiency of Pathumthani 1 rice seedlings grown under salt stress. ScienceAsia 43:70–81. https://doi.org/10.2306/scienceasia1513-1874.2017.43.070 CrossRefGoogle Scholar
  146. Kishor A, Srivastav M, Dubey AK, Singh AK, Sairam RK, Pandey RN, Dahuja A, Sharma RR (2009) Paclobutrazol minimises the effects of salt stress in mango (Mangifera indica L.) J Hortic Sci Biotechnol 84(4):459–465CrossRefGoogle Scholar
  147. Klepper B, Barrs HD (1968) Effects of salt secretion on psychrometric determinations of water potential of cotton leaves. Plant Physiol 43(7):1138–1140PubMedPubMedCentralCrossRefGoogle Scholar
  148. Kurban H, Saneoka H, Nehira K, Adilla R, Premachandra GS, Fujita K (1999) Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.) Soil Sci Plant Nutr 45(4):851–862CrossRefGoogle Scholar
  149. Lachhab I, Louahlia S, Laamarti M, Hammani K (2013) Effet d’un stress salin sur la germination et l’activité enzymatique chez deux génotypes de Medicago sativa. IJIAS 3(2):511–516Google Scholar
  150. Lamsal K, Paudyal GN, Saeed M (1999) Model for assessing impact of salinity on soil water availability and crop yield. Agr Water Manage 41:57–70CrossRefGoogle Scholar
  151. Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with zno nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70. https://doi.org/10.1007/s00344-016-9618-x CrossRefGoogle Scholar
  152. Levitt J (1980) Responses of plant to environmental stress water, radiation, salt and other stresses. Academic Press, New YorkGoogle Scholar
  153. Li M, Guo S, Xu Y, Meng Q, Li G, Yang X (2014) Glycine betaine-mediated potentiation of HSP gene expression involves calcium signaling pathways in tobacco exposed to NaCl stress. Physiol Plant 150(1):63–75PubMedCrossRefGoogle Scholar
  154. Liphschitz N, Waisel Y (1974) Existence of salt glands in various genera of Gramineae. New Phytol 73(3):507–513CrossRefGoogle Scholar
  155. Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827. https://doi.org/10.3389/fpls.2015.00827 PubMedPubMedCentralGoogle Scholar
  156. Liu R, Lai R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 51:131–139CrossRefGoogle Scholar
  157. Llanes A, Bertazza G, Palacio G, Luna V (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol 15:118–125PubMedCrossRefGoogle Scholar
  158. Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Plant Physiol 63(4):700–703PubMedPubMedCentralCrossRefGoogle Scholar
  159. Lv YC, Xu G, Sun JN, Brestič M, Živčák M, Shao HB (2015) Phosphorus release from the soils in the Yellow River Delta: dynamic factors and implications for eco-restoration. Plant Soil Environ 61(8):339–343. https://doi.org/10.17221/666/2014-PSE Google Scholar
  160. Lyshede OB (1917) Studies on the mucilaginolls cells in lhl.': k ar ol' .YparlO()'Slislis jilipes. PIOllfa 133:255–260Google Scholar
  161. Manan MM, Ibrahim NA, Aziz NA, Zulkifly HH, Al-Worafi YM, Long CM (2016) Empirical use of antibiotic therapy in the prevention of early onset sepsis in neonates: a pilot study. Arch Med Sci 12:603–613. https://doi.org/10.5114/aoms.2015.51208 PubMedCrossRefGoogle Scholar
  162. Marcum KB, Anderson SJ, Engelk MC (1998) Salt gland ion secretion/A salinity tolerance mechanism among five Zoysiagrass species. Crop Sci 38:806–810CrossRefGoogle Scholar
  163. Marcum KB, Murdoch CL (1994) Salinity tolerance mechanisms of six C4 turfgrasses. J Amer Soc Hort Sci 119(4):779–784Google Scholar
  164. Mass EV, Grieve CM (1990) Spike and leaf development in salt stressed wheat. Crop Sci 30:1309–1313CrossRefGoogle Scholar
  165. Mass EV, Nieman RH (1978) Physiology of plant tolerance to salinity. In: Jung GA (ed) Crop tolerance to suboptimal land conditions. Amer. Soc. Agron. Spec. Publ, USA, pp 277–299Google Scholar
  166. Mastronardi E, Tsae P, Zhang X, Monreal CM, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, BerlinGoogle Scholar
  167. Mauseth JD (1988) Plant Anatomy. The Benjamin/Cummings Publishing Co, Inc, CaliforniaGoogle Scholar
  168. Megdiche W, Amor BN, Debez A, Hessini K, Ksouri R, Zuily-Fodil Y, Abdelly C (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384CrossRefGoogle Scholar
  169. Mehta P, Jajoo A, Mathur M, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20PubMedCrossRefGoogle Scholar
  170. Menezes RV, Azevedo Neto AD, Oliveira Ribeiro M, Cova AMW (2017) Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesq Agropec Trop 47(1):22–30CrossRefGoogle Scholar
  171. Mermoud A (2006) Cours de physique du sol : Maîtrise de la salinité des sols. Ecole polytechnique fédérale de Lausanne, p 23Google Scholar
  172. Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. JPNSS 167(6):720–725Google Scholar
  173. Misra AN, Srivastava A, Strasser RJ (2001) Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and brassica seedlings. J Plant Physiol 158:1173–1181CrossRefGoogle Scholar
  174. Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157(6):661–667CrossRefGoogle Scholar
  175. Mohammad M, Shibli R, Ajlouni M, Nimri L (1998) Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. J Plant Nutr 21(8):1667–1680CrossRefGoogle Scholar
  176. Moles TM, Pompeiano A, Huarancca Reyes T, Scartazza A, Guglielminetti L (2016) The efficient physiological strategy of a tomato landrace in response to short-term salinity stress. Plant Physiol Biochem 109:262–272. https://doi.org/10.1016/j.plaphy.2016.10.008 PubMedCrossRefGoogle Scholar
  177. Moons A, Prinsen E, Bauw G, Montagu MV (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259PubMedPubMedCentralCrossRefGoogle Scholar
  178. Morais MC, Panuccio MR, Muscolo A, Freitas H (2012) Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. Plant Physiol Biochem 55:60–65PubMedCrossRefGoogle Scholar
  179. Mozafar A, Goodin JR (1970) Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol 45:62–65PubMedPubMedCentralCrossRefGoogle Scholar
  180. Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora 224:96–105CrossRefGoogle Scholar
  181. Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24CrossRefGoogle Scholar
  182. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  183. Munns R, Gilliham M (2015) Salinity tolerance of crops what is the cost? New Phytol 208(3):668–673PubMedCrossRefGoogle Scholar
  184. Munns R, James RA, Sirault XR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61(13):3499–3507. https://doi.org/10.1093/jxb/erq199 PubMedCrossRefGoogle Scholar
  185. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043PubMedCrossRefGoogle Scholar
  186. Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct Plant Biol 26(5):459–464Google Scholar
  187. Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160CrossRefGoogle Scholar
  188. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681Google Scholar
  189. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232Google Scholar
  190. Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agri Crop Sci 196:28–37. https://doi.org/10.1111/j.1439-037X.2009.00385.x CrossRefGoogle Scholar
  191. Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11PubMedCrossRefGoogle Scholar
  192. Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742PubMedPubMedCentralCrossRefGoogle Scholar
  193. Nivedithadevi D, Somasundaram R, Pannerselvam R (2012) Effect of abscisic acid, paclobutrazol and salicylic acid on the growth and pigment variation in Solanum trilobatum (I). Int J Drug Dev Res 4(3):236–246Google Scholar
  194. Oertli JJ (1968) Extracellular salt accumulation a possible mechanism of salt injury in plants. Agrochimica 12:461–469Google Scholar
  195. Orcutt DM, Nilsen ET (2000) The physiology of plants under stress: soil and biotic factors. JohnWiley and Sons, New YorkGoogle Scholar
  196. Orcutt DM, Nilsene T (2000) Physiology of plants under stress. John Wiley & Sons Inc., New York, NY, USAGoogle Scholar
  197. Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiolo Plant 138:10–21. https://doi.org/10.1111/j.1399-3054.2009.01292.x CrossRefGoogle Scholar
  198. Osmond CB, Lüttge U, West KR, Pallaghy CK, Shacher-Hill B (1969) Ion absorption in Atriplex leaf tissue. II. Secretion of ions to epidermal bladders. Aust J Biol Sci 22:797–814CrossRefGoogle Scholar
  199. Owens S (2001) Salt of the earth. Genetic engineering may help to reclaim agricultural land lost due to salinisation. EMBO Rep 2:877–879PubMedPubMedCentralCrossRefGoogle Scholar
  200. Özdemir F, Bor M, Demiral T, Türkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211. https://doi.org/10.1023/B:GROW.0000026509.25995.13 CrossRefGoogle Scholar
  201. Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  202. Parida AK, Das AB, Mittra B, Mohanty P (2004) Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift für Naturforschung C 59(5-6):408–414CrossRefGoogle Scholar
  203. Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Yang DC (2014) Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 537(1):70–78. https://doi.org/10.1016/j.gene.2013.12.021 PubMedCrossRefGoogle Scholar
  204. Pires RMO, Leite DG, Santos HO, Souza GA, Von Pinho EVR (2017) Physiological and enzymatic alterations in sesame seeds submitted to different osmotic potentials. Genet Mol Res 16(3). https://doi.org/10.4238/gmr16039425
  205. Pompeiano A, Di Patrizio E, Volterrani M, Scartazza A, Guglielminetti L (2016) Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery. Agric Water Manag 163:57–65CrossRefGoogle Scholar
  206. Poonam T, Tanushree B, Sukalyan C (2013) Water quality indicesimportant tools for water quality assessment: a review. Int J Adv Chem (IJAC) 1(1):15–28Google Scholar
  207. Price AH, Hendry GAF (1991) Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14:477–484. https://doi.org/10.1111/j.1365-3040.1991.tb01517.x CrossRefGoogle Scholar
  208. Puyang X, An M, Han L, Zhang X (2015) Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol Environ Saf 117:96–106. https://doi.org/10.1016/j.ecoenv.2015.03.023 PubMedCrossRefGoogle Scholar
  209. Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38(4):282–295CrossRefGoogle Scholar
  210. Qadir M, Qureshi AS, Cheraghi SAM (2008) Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad Dev 19(2):214–227CrossRefGoogle Scholar
  211. Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208PubMedCrossRefGoogle Scholar
  212. Quin L, Guo S, Ai W, Tang Y, Cheng Q, Chen G (2013) Effect of salt stress on growth and physiology in amaranth and lettuce: implications for bioregenerative life support system. Adv Space Res 51(3):476–482CrossRefGoogle Scholar
  213. Rahman MS, Miyake H, Takeoka Y (2002) Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.) Plant Prod Sci 5:33–44CrossRefGoogle Scholar
  214. Rajesh A, Arumugam R, Venkatesalu V (1998) Growth and photosynthetic characteristics of Ceriops roxburghiana under NaCl stress. Photosynthetica 35:285. https://doi.org/10.1023/A:1006983411991 CrossRefGoogle Scholar
  215. Rao PS, Mishra B, Gupta SR, Rathore A (2008) Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed 127:256–261. https://doi.org/10.1111/j.1439-0523.2007.01455.x CrossRefGoogle Scholar
  216. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S (2012) Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J Exp Bot 63(7):2717–2727. https://doi.org/10.1093/jxb/err457 PubMedPubMedCentralCrossRefGoogle Scholar
  218. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoy A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118. https://doi.org/10.1021/es4033887 PubMedCrossRefGoogle Scholar
  219. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163(8):847–855PubMedCrossRefGoogle Scholar
  220. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160(2):265–272PubMedCrossRefGoogle Scholar
  221. Rossi L, Zhang W, Lombardini L, Ma X (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36PubMedCrossRefGoogle Scholar
  222. Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328PubMedCrossRefGoogle Scholar
  223. Rozema J, Riphagen J (1977) Physiology and ecologic relevance of salt secretion by the salt gland of Glaux maritima L. Oecologia 29:349–357PubMedCrossRefGoogle Scholar
  224. Sabaghnia N, Janmohammadi M (2014) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann UMCS Biol 69:39–55Google Scholar
  225. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol 107:631–638PubMedPubMedCentralCrossRefGoogle Scholar
  226. Scholander PF, Hammel HT, Hemmingson ED, Garey W (1962) Salt balance in mangroves. Plant Physiol 37:722–729PubMedPubMedCentralCrossRefGoogle Scholar
  227. Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata bark. Environ Exp Bot 77:63–76CrossRefGoogle Scholar
  228. Sengupta S, Majumder AL (2010) Porteresia. coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice. Plant Cell Environ 33:526–542PubMedCrossRefGoogle Scholar
  229. Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32(4):237–249CrossRefGoogle Scholar
  230. Shahid MA, Pervez MA, Balal RM, Mattson NS, Rashid A, Ahmad R, Ayyub CM, Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.) Aust J Crop Sci 5:500–510Google Scholar
  231. Shakir E, Zahraw Z, Al-Obaidy AHM (2017) Environmental and health risks associated with reuse of wastewater for irrigation. Egypt J Pet 26(1):95–102CrossRefGoogle Scholar
  232. Shang Q, Song S, Zhang Z, Guo S (2006) Exogenous brassinosteroid induced salt resistance of cucumber (Cucumis sativus L.) seedlings. Sci Agric Sinica 39:1872–1877Google Scholar
  233. Sharma I, Bhardwaj R, Pati PK (2012) Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicol Environ Saf 85:72–81PubMedCrossRefGoogle Scholar
  234. Sheteawi AS (2007) Improving growth and yield of salt stressed soybean by exogenous application of jasmonic acid and ascobin. Int J Agric Biol 3:473–478Google Scholar
  235. Shomer I, Frenkel H, Polinger C (1991) The existence of a diffuse electric layer at cellulose fibril surfaces and its role in the swelling mechanism of parenchyma plant cell walls. Carbohydr Polym 16:199–210CrossRefGoogle Scholar
  236. Siadat H, Bybordi M, Malakouti MJ (1997) Salt-affected soils of Iran: a country report. international symposium on sustainable management of salt-affected soils in the arid ecosystem, CairoGoogle Scholar
  237. Siddique AB, Islam R, Hoque A, Hasan M, Tanvir RM, Mahir UM (2015) Mitigation of salt stress by foliar application of proline in rice. Univers J Agric Res 3:81–88. https://doi.org/10.13189/ujar.2015.030303 Google Scholar
  238. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.) Saudi J Biol Sci 21:13–17PubMedCrossRefGoogle Scholar
  239. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437PubMedCrossRefGoogle Scholar
  240. Silberbush M, Ben-Asher J, Ephrath JE (2005) A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant Soil 271(1-2):309–319CrossRefGoogle Scholar
  241. Singh SB, Singh BB, Singh M (1994) Effect of kinetin on chlorophyll, nitrogen and proline in mung bean under saline conditions. Indian J Plant Physiol 37:37–39Google Scholar
  242. Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. https://doi.org/10.1093/aob/mcu239 PubMedPubMedCentralCrossRefGoogle Scholar
  243. Slama I, M’Rabet R, Ksouri R, Talbi O, Debez A, Abdelly C (2017) Effects of salt treatment on growth, lipid membrane peroxidation, polyphenol content, and antioxidant activities in leaves of Sesuvium portulacastrum L. Arid Land Res Manag 31(4):404–417CrossRefGoogle Scholar
  244. Smaoui MA (1971) Differentiation des trichomes chez Atriplex halimus L. CR Acad Sci Paris Ser D 273:1268–1271Google Scholar
  245. Sobahan MA, Akter N, Ohno M, Okuma E, Hirai Y, Mori IC, Nakamura Y, Murata Y (2012) Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. Biosci Biotechno Biochem 76(8):1568–1570. https://doi.org/10.1271/bbb.120233 CrossRefGoogle Scholar
  246. Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47CrossRefGoogle Scholar
  247. Souleymane O, Hamidou M, Salifou M, Manneh B, Danquah E, Ofori K (2017) Genetic improvement of rice (Oryza sativa) for salt tolerance: a review. Inter J Advanc Res Botany 3:22–33. https://doi.org/10.20431/2455-4316.0303004 Google Scholar
  248. Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer arietinum L.) J Expt Bot 49:1329–1337CrossRefGoogle Scholar
  249. Staal M, Maathuis FJM, Elzenga JTM, Overbeek JHM, Prins HBA (1991) Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt-sensitive Plantago media. Physiol Plant 82:179–184. https://doi.org/10.1111/j.1399-3054.1991.tb00078.x CrossRefGoogle Scholar
  250. Stassart JM, Neirinckx L, De Jaegere R (1981) The interactions between monovalent cations and calcium during their adsorption on isolated cell walls and absorption by intact barley roots. Ann Bot 47(5):647–652CrossRefGoogle Scholar
  251. Stefanov M, Yotsova E, Rashkov G, Ivanova K, Markovska Y, Apostolova EL (2016) Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiol Biochem 101:54–59. https://doi.org/10.1016/j.plaphy.2016.01.017 PubMedCrossRefGoogle Scholar
  252. Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797:1313–1326CrossRefGoogle Scholar
  253. Sun S, An M, Han L, Yin S (2015) Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. Hortscience 50:1518–1523Google Scholar
  254. Sun ZW, Ren LK, Fan JW, Li Q, Wang KJ, Guo MM, Wang L, Li J, Zhang GX, Yang ZY, Chen F, Li XN (2016) Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant Soil Environ 62:515–521CrossRefGoogle Scholar
  255. Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, MA, 690 ppGoogle Scholar
  256. Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437. https://doi.org/10.3109/07388551.2014.889080 PubMedCrossRefGoogle Scholar
  257. Tehranifar A, Jamalian S, Tafazoli E, Davarynejad GH, Eshghi S (2009) Interaction effects of paclobutrazol and salinity on photosynthesis and vegetative growth of strawberry plants. Acta Hortic 842:821–824. https://doi.org/10.17660/ActaHortic.2009.842.181 CrossRefGoogle Scholar
  258. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527PubMedPubMedCentralCrossRefGoogle Scholar
  259. Thomson WW (1975) The structure and function of salt glands. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environments. Springer, Heidelberg, pp 118–146CrossRefGoogle Scholar
  260. Thomson WW, Faraday CD, Oross JW (1988) Salt glands. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific & Technical, Essex, UK, pp 498–537Google Scholar
  261. Thomson WW, Platt-Aloia K (1979) Ultrastructural transitions associated with the development of the bladder cells of the trichomes of Atriplex. Cytobios 25:105–114PubMedGoogle Scholar
  262. Tsonev TD, Lazova GN, Stoinova ZG, Popova LP (1998) A possible role for jasmonic acid in adaptation of barley seedling to salinity stress. J Plant Growth Regul 17:153–159CrossRefGoogle Scholar
  263. Tukey HB Jr, Tukey HB, Wittwer SH (1958) Loss of nutrients by foliar leaching as determined by radioisotopes. P Am Soc Hortic Sci 71:496–506Google Scholar
  264. Tukey HB, Morgan JV (1962) The occurrence of leaching from above ground plant parts and the nature of the material leached. 16th Intern Hort Congr Brussels:153–160Google Scholar
  265. Tyerman SD, Skerrett IM (1999) Root ion channels and salinity. Sci Hort 78:175–235. https://doi.org/10.1016/s0304-4238(98)00194-0 CrossRefGoogle Scholar
  266. Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67CrossRefGoogle Scholar
  267. Varjovi MB, Valizadeh M, Vahed MM (2016) Effect of salt stress and exogenous application of proline on some antioxidant enzymes activity in barley cultivars seedling. Biological forum. An International Journal 8(2):34–41Google Scholar
  268. Vicente O, Boscaiu M, Naranjo MÁ, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58(4):463–481CrossRefGoogle Scholar
  269. Von Willert DJ (1968) Tagesschwankungen des Ionengehalts in Salicornia europaea in Abhängigkeit vom Standort und von der Überflutung. Ber Dtsch Bot Ges Bd 81(10):442–449Google Scholar
  270. Wahid A (2003) Physiological significance of morpho-anatomical features of halophytes with particular reference to Cholistan flora. Int J Agric Biol 5:207–212Google Scholar
  271. Waisel Y (1972) Biology of halophytes. Academic Press, New YorkGoogle Scholar
  272. Wang L, Li W, Yang H, Wu W, Ma LI, Huang T, Wang X (2016) Physiological and biochemical responses of a medicinal halophyte Limonium bicolor (Bag.) kuntze to salt-stress. Pak J Bot 48(4):1371–1377Google Scholar
  273. Wang W, Wang R, Yuan Y, Du N, Guo W (2011) Effects of salt and water stress on plant biomass and photosynthetic characteristics of tamarisk (Tamarix chinensis Lour.) seedlings. Afr J Biotechnol 10:17981–11789Google Scholar
  274. Wang Y, Nil N (2000) Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus Tricolor leaves during salt stress. J Hortic Sci Biotechnol 75:623–627CrossRefGoogle Scholar
  275. Wang YY, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342PubMedCrossRefGoogle Scholar
  276. Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Golezani KG (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.) Plant OMICS 5(2):60–67Google Scholar
  277. Wilson C, Shannon MC (1995) Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Sci 107:147–157CrossRefGoogle Scholar
  278. Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci 8:1017. https://doi.org/10.3389/fpls.2017.01017 PubMedPubMedCentralCrossRefGoogle Scholar
  279. Wyn Jones RG, Brady CJ, Speirs J (1979) Ionic and osmotic relations in plant cells. In: Laidman DL, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic Press, London, pp 63–103Google Scholar
  280. Yan K, Wu C, Zhang L, Chen X (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front Plant Sci 6:227. https://doi.org/10.3389/fpls.2015.00227 PubMedPubMedCentralGoogle Scholar
  281. Yan P, Shao HB, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plant grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiologia Plantarum:2867–2878. https://doi.org/10.1007/s11738-013-1325-7
  282. Yang X, Lu C (2006) Effects of exogenous glycinebetaine on growth, CO2 assimilation, and photochemistry of maize plants. Photosystem II. Physiol Plant 127(4):593–602CrossRefGoogle Scholar
  283. Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352. https://doi.org/10.1111/j.1399-3054.2005.00518.x CrossRefGoogle Scholar
  284. Yasemin S, Koksal N, Özkaya A, Yener M (2017) Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. J Biol Environ Sci 11(32):59–66Google Scholar
  285. Yassen A, Abdallah E, Gaballah M, Zaghloul S (2017) Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.) Int J Agric Res 12:130–135. https://doi.org/10.3923/ijar.2017.130.135 CrossRefGoogle Scholar
  286. Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49(323):915–929Google Scholar
  287. Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58:214–222. https://doi.org/10.1111/j.1399-3054.1983.tb04172.x CrossRefGoogle Scholar
  288. Yeo AR, Lee ΛS, Izard P, Boursier PJ, Flowers TJ (1991) Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.) J Exp Bot 42(7):881–889CrossRefGoogle Scholar
  289. Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68CrossRefGoogle Scholar
  290. Zhang J, Davies WJ (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ 12:73–81CrossRefGoogle Scholar
  291. Zhang Y, Hu XH, Shi Y, Zou ZR, Yan F, Zhao YY, Zhang H, Zhao JZ (2013) Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline–alkaline stress. J Am Soc Hortic Sci 138(1):38–49Google Scholar
  292. Zhang Y, Zhang H, Zou ZR, Liu Y, Hu XH (2015) Deciphering the protective role of spermidine against saline–alkaline stress at physiological and proteomic levels in tomato. Phytochemistry 110:13–21. https://doi.org/10.1016/j.phytochem.2014.12.021 PubMedCrossRefGoogle Scholar
  293. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein and lipid peroxidation. ACS Nano 6:9615–9622. https://doi.org/10.1021/nn302975u PubMedPubMedCentralCrossRefGoogle Scholar
  294. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71PubMedCrossRefGoogle Scholar
  295. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedPubMedCentralCrossRefGoogle Scholar
  296. Zhu J, Meinzer CF (1999) Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Aust J Plant Physiol 26:79–86CrossRefGoogle Scholar
  297. Zid E, Grignon C (1991) Les tests de sélection précoce pour la résistance des plantes aux stress. Cas des stress salin et hydrique. L’amélioration des plantes pour l’adaptation aux milieux arides. Ed. John Libbey. Eurotext, Paris, pp 91–108Google Scholar
  298. Ziegler H, Lüttge U (1967) Die Salzdrüsen von Limonium vulgare. Planta 74:1–17. https://doi.org/10.1007/BF0038516 PubMedCrossRefGoogle Scholar
  299. Zivcak M, Brestic M, Sytar O (2016) Osmotic adjustment and plant adaptation to drought stress. In: Hossain MA (ed) Drought stress tolerance in plants, vol 1. Springer International Publishing, Switzerland, pp 105–143CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sonia Mbarki
    • 1
    • 7
  • Oksana Sytar
    • 2
  • Artemio Cerda
    • 3
  • Marek Zivcak
    • 2
  • Anshu Rastogi
    • 4
  • Xiaolan He
    • 5
  • Aziza Zoghlami
    • 6
  • Chedly Abdelly
    • 7
  • Marian Brestic
    • 2
  1. 1.National Research Institute of Rural Engineering, Water and Forests (INRGREF)ArianaTunisia
  2. 2.Department of Plant PhysiologySlovak University of AgricultureNitraSlovakia
  3. 3.Department of GeographyUniversitat de ValenciaValenciaSpain
  4. 4.Department of MeteorologyPoznan University of Life SciencesPoznanPoland
  5. 5.Jiangsu Academy of Agricultural Sciences (JAAS)NanjingChina
  6. 6.Institut National de la Recherche Agronomique de Tunisie(INRAT)Rue Hedi Karray ArianaTunisia
  7. 7.Laboratory of Plant Extremophile PlantsCenter of Biotechnology of Borj CedriaHammam-LifTunisia

Personalised recommendations