Skip to main content

Cross-Protection by Oxidative Stress: Improving Tolerance to Abiotic Stresses Including Salinity

  • Chapter
  • First Online:
Book cover Salinity Responses and Tolerance in Plants, Volume 1

Abstract

Abiotic stresses severely limit crop productivity. Plants being sessile, they are continuously exposed to a broad range of environmental stresses. Hence, multiple stress situations are more likely to occur in field conditions. Nevertheless, plants have evolved strategies to sense their environment to modulate its growth. However, its prime aim is to survive under adverse conditions and complete its life cycle. It is with the idea to increase or sustain productivity under adverse conditions that we are interested in. The response of plants to adverse environmental condition is sensed by changes in ROS leading to oxidative stress. Hence, it can be speculated that plants that are tolerant to oxidative stress would also be tolerant to multiple abiotic stress (abiotic stress-induced oxidative stress). In other words, cross-protection to multiple abiotic stresses can be achieved by developing plants tolerant to oxidative stress. Cross-protection can be enhanced by developing inherent tolerance by using conventional breeding or genetic engineering techniques or induced tolerance by priming. Here we try to compile the opinion of using oxidative stress tolerance as first line of defense against multiple abiotic stresses leading to cross-protection in field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ā€¢OH:

Hydroxyl radical

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

AsA:

Ascorbate

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GST:

glutathione S-transferase

H2O2 :

Hydrogen peroxide

MDHAR:

Monodehydroascorbate reductase

MV:

Methyl viologen

NA:

Not available

NO:

Nitric oxide

O2ā€¢āˆ’ :

Superoxide radical

OE:

Overexpression

PEG:

Polyethylene glycol

POX:

Peroxidase

PSI:

Photosystem I

PSII:

Photosystem II

RONSS:

Reactive oxygen, nitrogen, and sulfur species

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

References

  • Abogadallah GM (2011) Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci 180(3):540ā€“547

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ahmad R, Kim YH, Kim MD, Kwon SY, Cho K, Lee HS, Kwak SS (2010) Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol Plant 138(4):520ā€“533

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamageā€“repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1657(1):23ā€“32

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbAGenes in Synechocystis. Plant Physiol 130(3):1443ā€“1453

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98(1ā€“3):541

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:372.1331

    ArticleĀ  Google ScholarĀ 

  • Antoniou C, Savvides A, Christou A, Fotopoulos V (2016) Unravelling chemical priming machinery in plants: the role of reactive oxygenā€“nitrogenā€“sulfur species in abiotic stress tolerance enhancement. Curr Opin Plant Biol 33:101ā€“107

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373ā€“399

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Asensi-Fabado MA, Munne-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15(10):582ā€“592

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523ā€“3543

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • de Azevedo Neto AD, Prisco JT, EnĆ©as-Filho J, Medeiros J-VR, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162(10):1114ā€“1122

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166(4):919ā€“928

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56(3):238ā€“245

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229ā€“1240

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Biswal B (2005) Photosynthetic response of green plants to environmental stress. In: Handbook of Photosynthesis, 2nd edn. CRC Press, Boca Raton

    Google ScholarĀ 

  • Biswal UC, Raval MK (2003) Chloroplast biogenesis: from proplastid to gerontoplast. Springer Science & Business Media

    Google ScholarĀ 

  • Biswal B, Raval MK, Biswal UC, Joshi P (2008) Response of photosynthetic organelles to abiotic stress: modulation by Sulfur metabolism. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin Heidelberg, pp 167ā€“191

    ChapterĀ  Google ScholarĀ 

  • Biswal B, Joshi P, Raval M, Biswal U (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Curr Sci 101(1):47ā€“56

    CASĀ  Google ScholarĀ 

  • Borges AA, JimĆ©nez-Arias D, ExpĆ³sito-RodrĆ­guez M, Sandalio LM, PĆ©rez JA (2014) Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front Plant Sci 5:642

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6(1):43ā€“52

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chao Y-Y, Hsu Y, Kao C (2009) Involvement of glutathione in heat shock and hydrogen peroxide induced cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Soil 318(1ā€“2):37

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64(7):1953ā€“1966

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Christou A, Filippou P, Manganaris GA, Fotopoulos V (2014) Sodium hydrosulfide induces systemic thermo tolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14(1):42

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156ā€“165

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+ permeable channels in plant root cells. J Cell Sci 116(1):81ā€“88

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Demidchik V, Essah PA, Tester M (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219(1):167ā€“175

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J: for cell and molecular biology 58(6):903ā€“913

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+ efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123(9):1468ā€“1479

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, HernĆ”ndez JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11(8):976ā€“985

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dietz KJ (2003) Redox control, redox signaling, and redox homeostasis in plant cells. Int Rev Cytol 228:141ā€“193

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57(8):1697ā€“1709

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent Signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171(3):1541ā€“1550

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69(5):577ā€“592

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc Lond B Biol Sci 276(1663):1737ā€“1745

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127(1):57ā€“65

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255ā€“1264

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Eltayeb AE, Yamamoto S, Habora MEE, Yin L, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61(1):3ā€“10

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ensminger I, Busch F, Huner N (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126(1):28ā€“44

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Faize M, Burqos L, Piqueras A, Nicolas E, Barba-Espin G, Clement-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62(8):2599ā€“2613

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429ā€“450

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Filippou P, Tanou G, Molassiotis A, Fotopoulos V (2013) Plant acclimation to environmental stress using priming agents. In: Plant Acclimation to Environmental Stress. Springer, New York, NY, pp. 1ā€“27

    Google ScholarĀ 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442ā€“446

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signaling. J Exp Bot 59(4):729ā€“737

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355ā€“364

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28(8):1056ā€“1071

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11(4):861ā€“905

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2ā€“18

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93ā€“100

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436ā€“442

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128(2):251ā€“262

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem: PPB 48(12):909ā€“930

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6(2):293ā€“300

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90(5):898ā€“917

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gilroy S, Bialasek M, Suzuki N, Gorecka M, Devireddy AR, Karpinski S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171(3):1606ā€“1615

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gondim FA, Gomes-Filho E, Costa JH, Alencar NLM, Prisco JT (2012) Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiol Biochem 56:62ā€“71

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gondim FA, de Souza Miranda R, Gomes-Filho E, Prisco JT (2013) Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system. Theor Exp Plant Physiol 25(4):251ā€“260

    ArticleĀ  Google ScholarĀ 

  • Gong M, Chen B, Li Z-G, Guo L-H (2001) Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J Plant Physiol 158(9):1125ā€“1130

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143(3):1758ā€“1776

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143(3):1704ā€“1721

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • He L, Gao Z (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol 8(22):6151ā€“6157

    Google ScholarĀ 

  • Hemavathi, Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32(2):321ā€“330

    Google ScholarĀ 

  • Hossain MA, Fujita M (2013) Hydrogen Peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.) seedlings. Plant Gene Trait 4(1):109ā€“123

    Google ScholarĀ 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16(3):259ā€“272

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hossain MA, Hasanuzzaman M, Fujita M (2011) Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Front Agric China 5(1):1ā€“14

    ArticleĀ  Google ScholarĀ 

  • Hossain MA, Mostofa MG, Fujita M (2013a) Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol Plant Breed 4(7):50ā€“70

    Google ScholarĀ 

  • Hossain MA, Mostofa MG, Fujita M (2013b) Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. J Plant Sci Mol Breed 2(1):2

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LS (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huang S, Van Aken O, Schwarzlander M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171(3):1551ā€“1559

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • İşeri ƖD, Kƶrpe DA, Sahin FI, Haberal M (2013) Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta Physiol Plant 35(6):1905ā€“1913

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng S-H (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168(13):1562ā€“1567

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Islam T, Manna M, Reddy MK (2015) Glutathione Peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd 2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS One 10(11):e0143344

    ArticleĀ  PubMedĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38(7):4823ā€“4832

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32(8):1173ā€“1179

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plants 17(3):203

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92(10):1321ā€“1329

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kerchev P, Waszczak C, Lewandowska A, Willems P, Shapiguzov A, Li Z, Alseekh S, Muhlenbock P, Hoeberichts FA, Huang J, Van Der Kelen K, Kangasjarvi J, Fernie AR, De Smet R, Van de Peer Y, Messens J, Van Breusegem F (2016) Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the Photorespiratory phenotype of CATALASE2-deficient Arabidopsis. Plant Physiol 171(3):1704ā€“1719

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kerdnaimongkol K, Woodson WR (1999) Inhibition of catalase by antisense RNA increases susceptibility to oxidative stress and chilling injury in transgenic tomato plants. J Am Soc Hortic Sci 124(4):330ā€“336

    CASĀ  Google ScholarĀ 

  • Kim K, Portis AR (2004) Oxygen-dependent H2O2 production by Rubisco. FEBS Lett 571(1ā€“3):124ā€“128

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant 140(2):153ā€“162

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kouřil R, LazĆ”r D, Lee H, Jo J, NauÅ” J (2003) Moderately elevated temperature eliminates resistance of Rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress. Photosynthetica 41(4):571ā€“578

    ArticleĀ  Google ScholarĀ 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283(49):34197ā€“34203

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav 8(10):e25761

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kumari R, Singh S, Agrawal S (2010) Response of ultraviolet-B induced antioxidant defense system in a medicinal plant, Acorus calamus. J Environ Biol 31(6):907ā€“911

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lawlor DW (2009) Musings about the effects of environment on photosynthesis. Ann Bot 103(4):543ā€“549

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103(4):561ā€“579

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9(6):661ā€“673

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lee Y-P, Kim S-H, Bang J-W, Lee H-S, Kwak S-S, Kwon S-Y (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26(5):591ā€“598

    Google ScholarĀ 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239ā€“260

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139(4):421ā€“434

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 180(5):672ā€“678

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li Q, Li Y, Li C, Yu X (2012) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J Genet Plant Breed 48:74ā€“86

    ArticleĀ  Google ScholarĀ 

  • Lim S, Kim Y-H, Kim S-H, Kwon S-Y, Lee H-S, Kim J-S, Cho K-Y, Paek K-Y, Kwak S-S (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19(3):227ā€“239

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lim MY, Pulla RK, Park JM, Harn CH, Jeong BR (2012) Over-expression of L-gulono-Ī³-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato. In Vitro Cell Dev Biol Plant 48(5):453ā€“461

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1, 4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant 49(6):643ā€“655

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Liu Z-J, Guo Y-K, Bai J-G (2010) Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J Plant Growth Regul 29(2):171ā€“183

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu X-F, Sun W-M, Li Z-Q, Bai R-X, Li J-X, Shi Z-H, Hongwei G, Zheng Y, Zhang J, Zhang G-F (2013) Over-expression of ScMnSOD, a SOD gene derived from Jojoba, improve drought tolerance in Arabidopsis. J Integr Agric 12(10):1722ā€“1730

    Google ScholarĀ 

  • Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116(3):317ā€“327

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, Dā€™Halluin K, Botterman J (1993) Superoxide Dismutase Enhances Tolerance of Freezing Stress in Transgenic Alfalfa (Medicago sativa L.). Plant Physiol 103(4):1155ā€“1163

    Google ScholarĀ 

  • Melchiorre M, Robert G, Trippi V, Racca R, Lascano HR (2008) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul 57(1):57ā€“68

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Miller G, Suzuki N, CIFTCI-YILMAZ S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453ā€“467

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405ā€“410

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15ā€“19

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443ā€“462

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490ā€“498

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mohamed EA, Iwaki T, Munir I, Tamoi M, Shigeoka S, Wadano A (2003) Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerance. Plant Cell Environ 26(12):2037ā€“2046

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251(6):1373ā€“1386

    Google ScholarĀ 

  • Moller IM (2001) PLANT MITOCHONDRIA AND OXIDATIVE STRESS: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561ā€“591

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459ā€“481

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22(6):959ā€“973

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mostofa MG, Hossain MA, Fujita M (2015) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252(2):461ā€“475

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Murata Y, Pei Z.-M, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C Mutants. The Plant Cell 13(11):2513

    Google ScholarĀ 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44ā€“54

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98(21):8777ā€“8796

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264(1):98ā€“110

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164(4):1636ā€“1648

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141(2):758ā€“765

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Padmanabhan MS, Dinesh-Kumar S (2010) All hands on deckā€”the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Mol Plant-Microbe Interact 23(11):1368ā€“1380

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8(537)

    Google ScholarĀ 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of ā€œredoxā€ and abscisic acid-mediated controls. Plant Physiol 129(2):460ā€“468

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet 85(5):568ā€“576

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pfannschmidt T, BrƤutigam K, Wagner R, Dietzel L, Schrƶter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103(4):599ā€“607

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8(9ā€“10):1757ā€“1764

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pogson BJ, Woo NS, Fƶrster B, Small ID (2008) Plastid signaling to the nucleus and beyond. Trends Plant Sci 13(11):602ā€“609

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prashanth S, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281ā€“291

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Qi YC, Liu WQ, Qiu LY, Zhang SM, Ma L, Zhang H (2010) Overexpression of glutathione S-transferase gene increases salt tolerance of arabidopsis. Russ J Plant Physiol 57(2):233ā€“240

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Radhakrishnan R, Lee I-J (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32(1):22ā€“30

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rani B, Dhawan K, Jain V, Chhabra ML, Singh D (2013) High temperature induced changes in antioxidative enzymes in Brassica juncea (L) Czern & Coss. Recuperado el, 12.

    Google ScholarĀ 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47ā€“54

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ravindran K, Indrajith A, Pratheesh P, Sanjiviraja K, Balakrishnan V (2010) Effect of ultraviolet-B radiation on biochemical and antioxidant defence system in Indigofera tinctoria L. seedlings. Int J Eng Sci Technol 2(5):226ā€“232

    ArticleĀ  Google ScholarĀ 

  • Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7(3):177ā€“194

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and inter-organellar signaling. Plant Physiol 141(2):357ā€“366

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134(4):1683ā€“1696

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and-independent pathways of programmed cell death. Plant Physiol 129(4):1908ā€“1920

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Robinson JM, Bunce JA (2000) Influence of drought-induced water stress on soybean and spinach leaf ascorbate-dehydroascorbate level and redox status. Int J Plant Sci 161(2):271ā€“279

    Google ScholarĀ 

  • Rodriguez-Serrano M, Romero-Puertas MC, Sanz-Fernandez M, Hu J, Sandalio LM (2016) Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol 171(3):1665ā€“1674

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M (2002) Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115(4):531ā€“540

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30(9):1086ā€“1106

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sagor G, Berberich T, Takahashi Y, Niitsu M, Kusano T (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 22(3):595ā€“605

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokota A (2011) Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiol Plant 142(3):247ā€“264

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sathiyaraj G, Srinivasan S, Kim Y-J, Lee OR, Parvin S, Balusamy SRD, Khorolragchaa A, Yang DC (2014) Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng CA Meyer. Mol Biol Rep 41(6):3761ā€“3771

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30(3):399ā€“406

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329ā€“340

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scheibe R, Dietz K-J (2012) Reductionā€“oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell Environ 35(2):202ā€“216

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Selote DS, Khanna-Chopra R (2010) Antioxidant response of wheat roots to drought acclimation. Protoplasma 245(1ā€“4):153ā€“163

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shapiguzov A, Vainonen J, Wrzaczek M, KangasjƤrvi J (2012) ROS-talkā€“how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Singh N, Mishra A, Jha B (2014) Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16(3):321ā€“332

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Antioxidants and Reactive Oxygen Species in Plants. Blackwell Publishing Ltd., Oxford, pp 53ā€“86

    ChapterĀ  Google ScholarĀ 

  • Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14(4):358ā€“364

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sreenivasulu N, Sopory S, Kishor PK (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388(1):1ā€“13

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506(2):265ā€“273

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sultana S, Khew C-Y, Morshed MM, Namasivayam P, Napis S, Ho C-L (2012) Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. J Plant Physiol 169(3):311ā€“318

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29(8):917ā€“926

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259ā€“270

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32ā€“43

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28(1):66ā€“80

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Szechyńska-Hebda M, Karpiński S (2013) Light intensity-dependent retrograde signaling in higher plants. J Plant Physiol 170(17):1501ā€“1516

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Taiz L (2013) Agriculture, plant physiology, and human population growth: past, present, and future. Theoretical and experimental. Plant Physiol 25(3):167ā€“181

    Google ScholarĀ 

  • Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol 171(3):1626ā€“1634

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13(4):178ā€“182

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Takahashi S, Milward SE, Fan D-Y, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149(3):1560ā€“1567

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148(2):131ā€“138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25(12):1380ā€“1386

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tausz M, Å ircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55(404):1955ā€“1962

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Teng K, Li J, Liu L, Han Y, Du Y, Zhang J, Sun H, Zhao Q (2014) Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem II during PEG stress. Acta Physiologiae Plantarum 36(8):2219ā€“2227

    Google ScholarĀ 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res 13(3):225ā€“233

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tseng MJ, Liu C-W, Yiu J-C (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45(10):822ā€“833

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163(3):515ā€“523

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Upadhyaya CP, Hossain MA (2016) Transgenic plants for higher antioxidant content and drought stress tolerance. In: Drought stress tolerance in plants, vol 2. Springer, Cham, pp 473ā€“511

    ChapterĀ  Google ScholarĀ 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33(11):2297

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Van Breusegem F, Slooten L, Stassart JM, Moens T, Botterman J, Van Montagu M, Inze D (1999a) Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40(5):515ā€“523

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Van Breusegem F, Slooten L, Stassart J-M, Botterman J, Moens T, Van Montagu M, InzĆ© D (1999b) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot:71ā€“78

    Google ScholarĀ 

  • Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11(7):329ā€“334

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wahid A, Perveen M, Gelani S, Basra SM (2007) Pretreatment of seed with H 2 O 2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164(3):283ā€“294

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162(4):465ā€“472

    Google ScholarĀ 

  • Wang-Yueju, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130(2):167ā€“173

    Google ScholarĀ 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87ā€“90

    Google ScholarĀ 

  • Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui M, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J Appl Hortic 9:3ā€“8

    Google ScholarĀ 

  • Wang Y, Li J, Wang J, Li Z (2010) Exogenous H2O2 improves the chilling tolerance of manila grass and mascarene grass by activating the antioxidative system. Plant Growth Regul 61(2):195ā€“204

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang X, Guo X, Li Q, Tang Z, Kwak S, Ma D (2011) Studies on salt tolerance of transgenic sweetpotato which harbors two genes expressing CuZn superoxide dismutase and ascorbate peroxidase with the stress-inducible SWPA2 promoter. Plant Gene Trait 3(2):6ā€“12

    Google ScholarĀ 

  • Wang Y, Zhang J, Li J-L, Ma X-R (2014) Exogenous hydrogen peroxide enhanced the thermotolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity. Acta Physiol Plant 36(11):2915ā€“2924

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wani SH, Sah SK, Hossain MA, Kumar V, Balachandran SM (2016) Transgenic approaches for abiotic stress tolerance in crop plants. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham, pp 345ā€“396

    ChapterĀ  Google ScholarĀ 

  • Wilson KE, Ivanov AG, Ɩquist G, Grodzinski B, Sarhan F, Huner NP (2006) Energy balance, organellar redox status, and acclimation to environmental stress. Botany 84(9):1355ā€“1370

    CASĀ  Google ScholarĀ 

  • Wise RR (1995) Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45(2):79ā€“97

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9(5):383ā€“395

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14(1):208

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98(1ā€“3):589ā€“608

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yan K, Chen W, He X, Zhang G, Xu S, Wang L (2010) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ Exp Bot 69(2):198ā€“204

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang H, Wu F, Cheng J (2011) Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem 127(3):1237ā€“1242

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37(1):21ā€“33

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14(4):7405ā€“7432

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zandalinas SI, Mittler R, BalfagĆ³n D, Arbona V, GĆ³mez-Cadenas A (2017) Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum. https://doi.org/10.1111/ppl.12540

  • Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu ZS, Ma YZ (2013) Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS One 8(10):e73989

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30(3):389ā€“398

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang D-Y, Yang H-L, Li X-S, Li H-Y, Wang Y-C (2014) Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton. Mol Breed 34(1):1ā€“11

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao F, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Organ Cult 86(3):349ā€“358

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao D-Y, Shen L, Yu M-M, Zheng Y, Sheng J-P (2009) Relationship between activities of antioxidant enzymes and cold tolerance of postharvest tomato fruits. Food Sci 14:309ā€“313

    Google ScholarĀ 

  • Zhao F.-Y, Liu W, Zhang S-Y (2009) Different Responses of Plant Growth and Antioxidant System to the Combination of Cadmium and Heat Stress in Transgenic and Nontransgenic Rice. J Int Plant Biol 51(10):942ā€“950

    Google ScholarĀ 

Download references

Acknowledgments

The project was supported by the Ministry of Science and Technology (MOST) of Taiwan (Grant no. MOST 104-2313-B-002-013-MY3 and 106-2628-B-002-036-MY3) and National Taiwan University (Grant no. NTU-CDP-106R7721) to C.-Y. Hong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chwan-Yang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harshavardhan, V.T., Govind, G., Kalladan, R., Sreenivasulu, N., Hong, CY. (2018). Cross-Protection by Oxidative Stress: Improving Tolerance to Abiotic Stresses Including Salinity. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_11

Download citation

Publish with us

Policies and ethics