The Glyoxalase System: A Possible Target for Production of Salinity-Tolerant Crop Plants

  • Tahsina Sharmin Hoque
  • David J. Burritt
  • Mohammad Anwar Hossain


Among the various abiotic stressors, soil salinity is one of the most detrimental, restricting the growth and productivity of major agricultural crops worldwide. Apart from ionic, osmotic, and oxidative stress, one of the most important biochemical impacts of salt stress on plants is overaccumulation of methylglyoxal (MG), a cytotoxic compound that can cause degradation of proteins, lipids, and nucleic acids, inactivation of antioxidant systems and, finally, the death of plants. However, plants possess a complex network of enzymatic and nonenzymatic scavenging and detoxification systems to defend against MG-induced glycation and oxidative stress. Among the various defense mechanisms employed by plants, the glyoxalase system (composed mainly of two enzymes—glyoxalase I and glyoxalase II) is the most important, playing a crucial role in detoxifying MG, as well as regulating glutathione homeostasis and reactive oxygen species metabolism. Apart from its deleterious effects on plant growth and development, MG also has important signaling roles associated with stress tolerance. Recent genetic engineering studies have shown that overexpression of glyoxalase genes confers tolerance of various abiotic stresses, including salinity stress. This chapter summarizes the current knowledge and understanding of MG and the glyoxalase pathway, with respect to salinity stress tolerance and the potential for use of genetic engineering of glyoxalase genes into crop plants to improve crop yields under salt stress.


Salinity stress Ion homeostasis Methylglyoxal Glyoxalase system Oxidative stress Antioxidant defense Transgenic plants Stress tolerance Osmoprotectants Hormones Methylglyoxal signaling 



Singlet oxygen


Abscisic acid


Ascorbate peroxidase










Dihydroxyacetone phosphate


Dehydroascorbate reductase








Glycine betaine




Glutathione peroxidase


Glutathione reductase


Reduced glutathione


Oxidized glutathione




High-affinity potassium transporter


Indole-3-acetic acid






Monodehydroascorbate reductase






Na+/H+ exchanger




Hydroxyl radical


Programmed cell death






Photosystem II


Reactive oxygen species


Salicylic acid




Superoxide dismutase


Salt Overly Sensitive



Mohammad Anwar Hossain thankfully acknowledges his postdoctoral fellowship from the Japan Society for the Promotion of Science (JSPS).


  1. Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A et al (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18CrossRefGoogle Scholar
  3. Adem GD, Roy SJ, Zhou M et al (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol 14:113PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahmad P, Prasad MNV (2012a) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New YorkCrossRefGoogle Scholar
  5. Ahmad P, Prasad MNV (2012b) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  6. Ahmad P, Umar S (2011) Oxidative stress: role of antioxidants in plants. Studium Press, New DelhiGoogle Scholar
  7. Ahmad P, Jaleel CA, Salem MA et al (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175PubMedCrossRefGoogle Scholar
  8. Ahmad P, Hakeem KR, Kumar A et al (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.) Afr J Biotechnol 11:2694–2703Google Scholar
  9. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90PubMedCrossRefGoogle Scholar
  10. Akram S, Siddiqui MN, Hussain BMN et al (2017) Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul 36:877–888. CrossRefGoogle Scholar
  11. Allu AD, Soja AM, Wu A et al (2014) Salt stress and senescence: identification of cross-talk regulatory components. J Exp Bot 65:3993–4008PubMedPubMedCentralCrossRefGoogle Scholar
  12. Alvarez Viveros MF, Inostroza-Blancheteau C, Timmermann T et al (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40:3281–3290PubMedCrossRefGoogle Scholar
  13. Alvarez-Gerding X, Cortés-Bullemore R, Medina C et al (2015) Improved salinity tolerance in Carrizo Citrange rootstock through overexpression of glyoxalase system genes. Biomed Res Int 2015:827951PubMedPubMedCentralCrossRefGoogle Scholar
  14. Amjad M, Akhtar J, Anwar-ul-Haq M et al (2014) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hort 172:109–116CrossRefGoogle Scholar
  15. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  16. Ashraf M, Akram NA, Arteca RN et al (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190CrossRefGoogle Scholar
  17. Attipali RR, Kolluru VC, Munusamy V (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202CrossRefGoogle Scholar
  18. Azzedine F, Gherroucha H, Baka M (2011) Improvement of salt tolerance in durum wheat by ascorbic acid application. J Stress Physiol Biochem 7:27–37Google Scholar
  19. Banu MNA, Hoque MA, Watanabe-Sugimoto M et al (2010) Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Biosci Biotechnol Biochem 74:2043–2049PubMedCrossRefGoogle Scholar
  20. Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69:275–284CrossRefGoogle Scholar
  21. Bhomkar P, Upadhyay CP, Saxena M et al (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breed 22:169–181CrossRefGoogle Scholar
  22. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257PubMedCrossRefGoogle Scholar
  23. Cabot C, Sibole JV, Barcelo J et al (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192CrossRefGoogle Scholar
  24. Casazza JP, Felver ME, Veech RL (1984) The metabolism of acetone in rat. J Biol Chem 259:231–236PubMedGoogle Scholar
  25. Chakraborty K, Sairam RK, Bhattacharya R (2012) Differential expression of Salt Overly Sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101PubMedCrossRefGoogle Scholar
  26. Chaparzadeh N, D’Amico ML, Khavari-Nejad RA et al (2004) Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem 42:695–701PubMedCrossRefGoogle Scholar
  27. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560Google Scholar
  28. Cramer GR, Quarrie SA (2002) Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct Plant Biol 29:111–115CrossRefGoogle Scholar
  29. Dehghan G, Rezazadeh L, Habibi G (2011) Exogenous ascorbate improves antioxidant defense system and induces salinity tolerance in soybean seedlings. Acta Biol Szeged 55:261–264Google Scholar
  30. Devanathan S, Erban A, Rodolfo PJ et al (2014) Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. PLoS One 9:e9597Google Scholar
  31. Do TD, Chen H, Hien VTT et al (2016) Ncl synchronously regulates Na+, K+, and Cl in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dong Z, Shi L, Wang Y et al (2013) Identification and dynamic regulation of microRNAs involved in salt stress responses in functional soybean nodules by high throughput sequencing. Int J Mol Sci 14:2717–2738PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ejaz B, Sajid ZA, Aftab F (2012) Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress. Turk J Biol 35:630–640Google Scholar
  34. El-Shabrawi H, Kumar B, Kaul T et al (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 24:85–96CrossRefGoogle Scholar
  35. Fahad S, Hussain S, Bano A et al (2015) Potential role of phytohormones and plant growth–promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921CrossRefGoogle Scholar
  36. Fariduddin Q, Mir BA, Yusuf M et al (2014) 24-Epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica 52:464–474CrossRefGoogle Scholar
  37. Farouk S (2011) Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence. J Stress Physiol Biochem 7:58–79Google Scholar
  38. Fricke W, Akhiyarova G, Wei WX et al (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095PubMedCrossRefGoogle Scholar
  39. Gao S, Ouyang C, Wang S et al (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381CrossRefGoogle Scholar
  40. Ghosh A, Pareek A, Sopory SK et al (2014) A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J 80:93–105PubMedCrossRefGoogle Scholar
  41. Ghosh A, Kushwaha HR, Hasan MR et al (2016) Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Sci Rep 6:18358PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  43. Gómez Ojeda A, Corrales Escobosa AR, Wrobel K et al (2013) Effect of cd(II) and se(IV) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum. Metallomics 5:1254–1261PubMedCrossRefGoogle Scholar
  44. Gupta B, Huang B (2014) Mechanisms of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:1–18CrossRefGoogle Scholar
  45. Gupta BK, Sahoo KK, Ghosh A et al (2017) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ.
  46. Gurmani AR, Bano A, Khan SU et al (2011) Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.) Aust J Crop Sci 5:1278–1285Google Scholar
  47. Hasanuzzaman M, Hossain MA, Fujita M (2011a) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365CrossRefGoogle Scholar
  48. Hasanuzzaman M, Hossain MA, Fujita M (2011b) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721PubMedCrossRefGoogle Scholar
  49. Hasanuzzaman M, Hossain MA, Fujita M (2012a) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by up-regulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261PubMedCrossRefGoogle Scholar
  50. Hasanuzzaman M, Hossain MA, Teixeira da Silva JA et al (2012b) Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factors. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316CrossRefGoogle Scholar
  51. Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31CrossRefGoogle Scholar
  52. Hasegawa PM, Bressan RA, Zhu JK et al (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedCrossRefGoogle Scholar
  53. Hayat S, Hayat Q, Alyemeni MN et al (2012) Role of proline under changing environment. Plant Signal Behav 7:1456–1466PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hernández JA, Jiménez A, Mullineaux P et al (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862CrossRefGoogle Scholar
  55. Hernández M, Fernandez-Garcia N, Diaz-Vivancos P et al (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61:521–535PubMedCrossRefGoogle Scholar
  56. Hoque MA, Banu MNA, Nakamura Y et al (2008) Proline and glycine betaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824PubMedCrossRefGoogle Scholar
  57. Hoque MA, Uraji M, Banu MNA et al (2010) The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum. Biosci Biotechnol Biochem 74:2124–2126PubMedCrossRefGoogle Scholar
  58. Hoque MA, Uraji M, Banu MNA et al (2012a) Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. J Biochem Mol Toxicol 26:315–321PubMedCrossRefGoogle Scholar
  59. Hoque TS, Okuma E, Uraji M et al (2012b) Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem 76:617–619PubMedCrossRefGoogle Scholar
  60. Hoque TS, Uraji M, Tuya A et al (2012c) Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol 14:854–858PubMedCrossRefGoogle Scholar
  61. Hoque TS, Uraji M, Ye W et al (2012d) Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J Plant Physiol 169:979–986PubMedCrossRefGoogle Scholar
  62. Hoque TS, Hossain MA, Mostofa MG et al (2015) Signalling roles of methylglyoxal and the involvement of the glyoxalase system in plant abiotic stress responses and tolerance. In: Azooz MM, Ahmad P (eds) Plant–environment interaction: responses and approaches to mitigate stress. Wiley, Chichester, pp 311–326CrossRefGoogle Scholar
  63. Hoque TS, Hossain MA, Mostofa MG et al (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hoque TS, Uraji M, Hoque MA et al (2017) Methylglyoxal induces inhibition of growth, accumulation of anthocyanin, and activation of glyoxalase I and II in Arabidopsis thaliana. J Biochem Mol Toxicol 2017:e21901CrossRefGoogle Scholar
  65. Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73:2007–2013PubMedCrossRefGoogle Scholar
  67. Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16:19–29PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64Google Scholar
  69. Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–272PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hossain MA, Teixeira da Silva JA, Fujita M (2011a) Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an intimate relationship. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. INTECH-Open Access Publisher, Rijeka, pp 235–266Google Scholar
  71. Hossain MA, Hasanuzzaman M, Fujita M (2011b) Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Front Agric China 5:1–14CrossRefGoogle Scholar
  72. Hossain MA, Mostofa MG, Fujita M (2013a) Cross protection by cold-shock to salinity and drought stress–induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol Plant Breed 4:50–70Google Scholar
  73. Hossain MA, Mostofa MG, Fujita M (2013b) Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. J Plant Sci Mol Breed 2:1–14CrossRefGoogle Scholar
  74. Hossain MA, Mostofa MG, Burritt DJ et al (2014a) Modulation of reactive oxygen species and methylglyoxal detoxification systems by exogenous glycinebetaine and proline improves drought tolerance in mustard (Brassica juncea L.) Int J Plant Biol Res 2(2):2014Google Scholar
  75. Hossain MA, Hoque MA, Burritt DJ et al (2014b) Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In: Ahmad P (ed) Oxidative damage to plants. Elsevier, USA, pp 477–522CrossRefGoogle Scholar
  76. Hu L, Hu T, Zhang X et al (2012) Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass (Lolium perenne L.) J Amer Soc Hort Sci 137:38–46Google Scholar
  77. Hussain BMN, Akram S, Raffi SA et al (2016) Exogenous glutathione improves salinity stress tolerance in rice (Oryza sativa L.) Plant Gene Trait 8:1–17CrossRefGoogle Scholar
  78. Ishitani M, Liu J, Halfter U et al (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1677PubMedPubMedCentralCrossRefGoogle Scholar
  79. Jagadish S, Septiningsih E, Kohli A et al (2012) Genetic advances in adapting rice to a rapidly changing climate. J Agron Crop Sci 198:360–373CrossRefGoogle Scholar
  80. James RA, Blake C, Byrt CS et al (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947PubMedCrossRefGoogle Scholar
  81. Jeschke WD, Peuke AD, Pate JS et al (1997) Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot 48:1737–1747CrossRefGoogle Scholar
  82. Ji H, Pardo JM, Batelli G et al (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286PubMedCrossRefGoogle Scholar
  83. Jin SH, Li XQ, Wang GG et al (2015) Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants 7:plv009PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kadioglu A, Saruhan N, Sağlam A et al (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37CrossRefGoogle Scholar
  85. Kalapos MP (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology biological implications. Toxicol Lett 110:145–175PubMedCrossRefGoogle Scholar
  86. Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171:251–271PubMedCrossRefGoogle Scholar
  87. Kamiab F, Talaie A, Khexri M et al (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72:257–268CrossRefGoogle Scholar
  88. Kang DJ, Seo YJ, Lee JD et al (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282CrossRefGoogle Scholar
  89. Kaur C, Ghosh A, Pareek A et al (2014a) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490PubMedCrossRefGoogle Scholar
  90. Kaur C, Mustafiz A, Sarkar A et al (2014b) Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiol Plant 152:1–16PubMedCrossRefGoogle Scholar
  91. Kaur C, Singla-Pareek SL, Sopory SK (2014c) Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance. Crit Rev Plant Sci 33:429–456CrossRefGoogle Scholar
  92. Kaya C, Sonmez O, Aydemir S et al (2013) Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.) J Plant Interact 3:234–241CrossRefGoogle Scholar
  93. Kirch HH, Schlingensiepen S, Kotchoni S et al (2005) Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. Plant Mol Biol 57:315–332PubMedCrossRefGoogle Scholar
  94. Kissoudis C, Seifi A, Yan Z et al (2016) Ethylene and abscisic acid signaling pathways differentially influence tomato resistance to combined powdery mildew and salt stress. Front Plant Sci 7:2009PubMedGoogle Scholar
  95. Koop DR, Casazza JP (1985) Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem 260:13607–13612PubMedGoogle Scholar
  96. Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28Google Scholar
  97. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kubiś J (2008) Exogenous spermidine alters in different ways activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water stressed cucumber leaves. J Plant Physiol 165:397–406PubMedCrossRefGoogle Scholar
  99. Kubiś J, Floryszak-Wieczorek J, Arasimowicz-Jelonek M (2014) Polyamines induce adaptive responses in water deficit stressed cucumber roots. J Plant Res 127:151–158PubMedCrossRefGoogle Scholar
  100. Kumar V, Yadav SK (2009) Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze. Acta Physiol Plant 31:261–269CrossRefGoogle Scholar
  101. Kumar M (2013) Crop plants and abiotic stresses. J Biomol Res Ther 3:e125Google Scholar
  102. Kusano T, Yamaguchi K, Berberich T et al (2007) The polyamine spermine rescues Arabidopsis from salinity and drought. Plant Signal Behav 2:251–252PubMedPubMedCentralCrossRefGoogle Scholar
  103. Li ZG (2016) Methylglyoxal and glyoxalase system in plants: old players, new concepts. Bot Rev 82:183–203CrossRefGoogle Scholar
  104. Li ZG, Duan XQ, Min X (2017a) Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. Protoplasma 254(5):1995–2006. PubMedCrossRefGoogle Scholar
  105. Li ZG, Duan XQ, Xia YM et al (2017b) Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L.) Plant Cell Rep 36:367–370PubMedCrossRefGoogle Scholar
  106. Lin F, Xu J, Shi J et al (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.) Mol Biol Rep 37:729–735PubMedCrossRefGoogle Scholar
  107. Liu W, Zhang Y, Yuan X et al (2016) Exogenous salicylic acid improves salinity tolerance of Nitraria tangutorum. Russ J Plant Physiol 63:132–142CrossRefGoogle Scholar
  108. Lyles GA, Chalmers J (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 43:1409–1414PubMedCrossRefGoogle Scholar
  109. Maeta K, Izawa S, Inoue Y (2005) Methylgyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253–260PubMedCrossRefGoogle Scholar
  110. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefGoogle Scholar
  111. Malekzadeh P (2015) Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.) Physiol Mol Biol Plants 21:225–232PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mano J (2012) Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59:90–97PubMedCrossRefGoogle Scholar
  113. Mano J, Miyatake F, Hiraoka E et al (2009) Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta 230:639–648PubMedCrossRefGoogle Scholar
  114. Martins AMTBS, Coedeiro CAA, Freire AMJP (2001) In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett 499:41–44Google Scholar
  115. Mittova V, Guy M, Tal M et al (2004) Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113PubMedCrossRefGoogle Scholar
  116. Mostofa MG, Seraj ZI, Fujita M (2014a) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251:1373–1386PubMedCrossRefGoogle Scholar
  117. Mostofa MG, Yoshida N, Fujita M (2014b) Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul 73:31–44CrossRefGoogle Scholar
  118. Mostofa MG, Hossain MA, Fujita M (2015a) Trehalose pretreatment induces salt tolerance in rice seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. PRO 252:461–475Google Scholar
  119. Mostofa MG, Hossain MA, Fujita M et al (2015b) Physiological and biochemical mechanism associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433PubMedPubMedCentralCrossRefGoogle Scholar
  120. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefGoogle Scholar
  121. Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673PubMedCrossRefGoogle Scholar
  122. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  123. Mustafiz A, Singh AK, Pareek A et al (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 11:293–305PubMedCrossRefGoogle Scholar
  124. Mustafiz A, Ghosh A, Tripathi AK et al (2014) A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J 78:951–963PubMedCrossRefGoogle Scholar
  125. Nahar K, Hasanuzzaman M, Alam MM et al (2015a) Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mungbean. Biol Plant 59:745–756CrossRefGoogle Scholar
  126. Nahar K, Hasanuzzaman M, Alam MM et al (2015b) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54CrossRefGoogle Scholar
  127. Narawongsanont R, Kabinpong S, Auiyawong B et al (2012) Cloning and characterization of AKR4C14, a rice aldo-ketoreductase, from Thai jasmine rice. Protein J 31:35–42PubMedCrossRefGoogle Scholar
  128. Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18CrossRefGoogle Scholar
  129. Noctor G, Mhamdi A, Chaouch S et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484Google Scholar
  130. Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604PubMedCrossRefGoogle Scholar
  131. Osakabe Y, Osakabe K, Shinozaki K et al (2014) Response of plants to water stress. Front Plant Sci 5:86PubMedPubMedCentralCrossRefGoogle Scholar
  132. Patade VY, Lokhande V, Suprasanna P (2014) Exogenous application of proline alleviates salt induced oxidative stress more efficiently than glycine betaine in sugarcane cultured cells. Sugar Tech 16:22–29CrossRefGoogle Scholar
  133. Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 3–20Google Scholar
  134. Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Reg 14:211–218CrossRefGoogle Scholar
  135. Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582PubMedCrossRefGoogle Scholar
  136. Quan R, Wang J, Yang D et al (2017) EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 7:44637PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rahnama A, James RA, Poustini K et al (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263CrossRefGoogle Scholar
  138. Rajwanshi R, Kumar D, Yusuf M et al (2016) Stress-inducible overexpression of glyoxalase I is preferable to its constitutive overexpression for abiotic stress tolerance in transgenic Brassica juncea. Mol Breed 36:1–15CrossRefGoogle Scholar
  139. Ranganayakulu GS, Veeranagamallaiah G, Sudhakar C (2013) Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. African J Plant Sci 12:586–592Google Scholar
  140. Ray S, Dutta S, Halder J et al (1994) Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J 303:69–72PubMedPubMedCentralCrossRefGoogle Scholar
  141. Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395PubMedCrossRefGoogle Scholar
  142. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384CrossRefGoogle Scholar
  143. Richard JP (1993) Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans 21:549–553PubMedCrossRefGoogle Scholar
  144. Ridderström M, Cameron AD, Jones TA et al (1998) Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I. J Biol Chem 273:21623–21628PubMedCrossRefGoogle Scholar
  145. Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10Google Scholar
  146. Roy SD, Saxena M, Bhomkar PS et al (2008) Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoter. Plant Cell Tissue Organ Cult 95:1–11CrossRefGoogle Scholar
  147. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124PubMedCrossRefGoogle Scholar
  148. Rozema J, Flowers T (2008) Ecology: crops for a salinized world. Science 322:1478–1380PubMedCrossRefGoogle Scholar
  149. Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155CrossRefGoogle Scholar
  150. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421Google Scholar
  151. Saito R, Yamamoto H, Makino A, Sugimoto T, Miyake C (2011) Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O2 at photosystem I: a symptom of plant diabetes. Plant Cell Environ 34:1454–1464PubMedCrossRefGoogle Scholar
  152. Salama KHA, Al-Mutawa MM (2009) Glutathione-triggered mitigation in salt-induced alterations in plasmalemma of onion epidermal cells. Int J Agric Biol 11:639–642Google Scholar
  153. Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10:486–488CrossRefGoogle Scholar
  154. Sankaranarayanan S, Jamshed M, Kumar A et al (2017) Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int J Mol Sci 18:898PubMedCentralCrossRefGoogle Scholar
  155. Saxena M, Roy SD, Singla-Pareek SL et al (2011) Overexpression of the glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Sci J 5:23–28CrossRefGoogle Scholar
  156. Serrano R, Márquez JA, Rios G (1997) Crucial factors in salt stress tolerance. In: Hohmann S, Mager WH (eds) Yeast stress responses. RG Landes Company, Austin, pp 147–169Google Scholar
  157. Shakirova FM, Avalbaev AM, Bezrukova MV et al (2010) Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant Stress 4:32–38Google Scholar
  158. Shangari N, O’Brien PJ (2004) The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 68:1433–1442PubMedCrossRefGoogle Scholar
  159. Sharma I, Ching E, Saini S (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26PubMedCrossRefGoogle Scholar
  160. Shi H, Quintero FJ, Prado JM et al (2002) The putative plasma membrane Na+–H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477PubMedPubMedCentralCrossRefGoogle Scholar
  161. Simpson PJ, Tantitadapitak C, Reed AM et al (2009) Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J Mol Biol 392:465–480Google Scholar
  162. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677PubMedPubMedCentralCrossRefGoogle Scholar
  163. Singla-Pareek SL, Yadav SK, Pareek A et al (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623PubMedPubMedCentralCrossRefGoogle Scholar
  164. Singla-Pareek SL, Yadav SK, Pareek A et al (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180PubMedCrossRefGoogle Scholar
  165. Sobahan MA, Akter N, Ohno M et al (2012) Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. Biosci Biotechnol Biochem 76:1568–1570PubMedCrossRefGoogle Scholar
  166. Sripinyowanich S, Klomsakul P, Boonburapong B et al (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105CrossRefGoogle Scholar
  167. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457PubMedCrossRefGoogle Scholar
  168. Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death–like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281CrossRefGoogle Scholar
  169. Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459PubMedPubMedCentralCrossRefGoogle Scholar
  170. Theerakulpisut P, Gunnula W (2012) Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt-tolerant rice seedlings. Asian J Crop Sci 4:165–170CrossRefGoogle Scholar
  171. Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress-responses: abscisic acid, cytokinin, and the effects of NaCl. Plant Physiol 100:416–423PubMedPubMedCentralCrossRefGoogle Scholar
  172. Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Asp Med 14:287–371CrossRefGoogle Scholar
  173. Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348PubMedCrossRefGoogle Scholar
  174. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125–150PubMedPubMedCentralCrossRefGoogle Scholar
  175. Thornalley PJ, Waris S, Fleming T et al (2010) Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1–associated tumour multidrug resistance. Nucleic Acids Res 38:5432–5442PubMedPubMedCentralCrossRefGoogle Scholar
  176. Torabian AR (2011) Effect of salicylic acid on germination and growth of alfalfa (Medicago sativa L.) seedlings under water potential loss at salinity stress. Plant Ecophysiol 2:151–155Google Scholar
  177. Tuomainen M, Ahonen V, Kärenlampi SO et al (2011) Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens. Planta 233:1173–1184PubMedCrossRefGoogle Scholar
  178. Upadhyaya CP, Venkatesh J, Gururani MA et al (2011) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297–2307PubMedCrossRefGoogle Scholar
  179. Vaidyanathan R, Kuruvilla S, Thomas G (1999) Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci 140:21–30CrossRefGoogle Scholar
  180. Van Oosten MJ, Sharkhuu A, Batelli G et al (2013) The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol Biol 83:405–415PubMedCrossRefGoogle Scholar
  181. Vardharajula S, Ali SZ, Grover M et al (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 1:1–14CrossRefGoogle Scholar
  182. Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395Google Scholar
  183. Verma M, Verma D, Jain RK et al (2005) Overexpression of glyoxalase I gene confers salinity tolerance in transgenic japonica and indica rice plants. Rice Genet Newslett 22:58–62Google Scholar
  184. Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  185. Wang R, Liu S, Zhou F et al (2014) Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of (Oryza sativa L.) J Biosci 69:226–236Google Scholar
  186. Wani SH, Gosal SS (2011) Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol Plantarum 55:536–540Google Scholar
  187. Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol Plant 93:659–666CrossRefGoogle Scholar
  188. Wu X, Zhu Z, Li X et al (2012) Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol Plant 34:2105–2114CrossRefGoogle Scholar
  189. Wu C, Ma C, Pan Y et al (2013) Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. J Plant Res 126:415–425PubMedCrossRefGoogle Scholar
  190. Yadav SK, Singla-Pareek SL, Ray M et al (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67PubMedCrossRefGoogle Scholar
  191. Yadav SK, Singla-Pareek SL, Ray M et al (2005b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271PubMedCrossRefGoogle Scholar
  192. Yadav SK, Singla-Pareek SL, Sopory SK (2008). An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68Google Scholar
  193. Yang Q, Chen ZZ, Zhou XF et al (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31PubMedCrossRefGoogle Scholar
  194. Yang L, Zu YG, Tang Z (2013) Ethylene improves Arabidopsis salt tolerance mainly via K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot 86:60–69CrossRefGoogle Scholar
  195. Yang Y, Tang RJ, Jiang CM et al (2015) Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnol J 13:962–973PubMedCrossRefGoogle Scholar
  196. Yoon JY, Hamayun M, Lee S-K, Lee I-J (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68CrossRefGoogle Scholar
  197. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zeng Z, Xiong F, Yu X et al (2016) Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.) Plant Physiol Biochem 109:62–71PubMedCrossRefGoogle Scholar
  199. Zhang J, Jia W, Yang Y et al (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119CrossRefGoogle Scholar
  200. Zhou J, Wang J, Bi Y et al (2014) Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol Biol Rep 32:185–197PubMedCrossRefGoogle Scholar
  201. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar
  202. Zhu JK (2007) Plant salt stress. Encyclopaedia of life sciences. Wiley, Chichester, pp 1–3Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tahsina Sharmin Hoque
    • 1
  • David J. Burritt
    • 2
  • Mohammad Anwar Hossain
    • 3
    • 4
  1. 1.Department of Soil ScienceBangladesh Agricultural UniversityMymensinghBangladesh
  2. 2.Department of BotanyUniversity of OtagoDunedinNew Zealand
  3. 3.Department of Genetics and Plant BreedingBangladesh Agricultural UniversityMymensinghBangladesh
  4. 4.Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyoJapan

Personalised recommendations