Skip to main content

Fundamentals of Energy Utilization in the Operating Room

Abstract

Energy devices are used throughout surgery and for nearly every operation. Major benefits of using energy devices include aid in dissection, achievement of hemostasis, and ablation of unwanted tissue. Numerous types of energy devices are available, including monopolar and bipolar electrosurgical devices, ultrasonic energy, and argon beam plasma coagulators. While energy devices are enormously useful for the safe completion of modern surgical procedures, risks of the use of energy devices are significant and include inadvertent tissue injury, interference with implanted devices, and operating room fires, among others. Surgeons must be familiar with the types of devices available, their appropriate setup and use, limitations of each device and type of energy used, and potential sources of patient or personal injury. This chapter summarizes these concepts.

Keywords

  • Electrosurgery
  • Energy
  • Monopolar
  • Bipolar
  • Ultrasonic
  • Argon
  • Coupling
  • Fire
  • Pacemaker

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75656-1_9
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-75656-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3

Suggested Readings

  • Feldman LS, Fuchshuber P, Jones DB. The SAGES manual on the fundamental use of surgical energy (FUSE). New York: Springer; 2012.

    CrossRef  Google Scholar 

References

  1. Lee J. Update on electrosurgery. Outpatient Surg. 2002;2:44–53.

    Google Scholar 

  2. Nduka CC, Super PA, Monson JR, Darzi AW. Cause and prevention of electrosurgical injuries in laparoscopy. J Am Coll Surg. 1994;179:161–70.

    PubMed  CAS  Google Scholar 

  3. Tucker RD. Laparoscopic electrosurgical injuries: survey results and their implications. Surg Laparosc Endosc. 1995;5:311–7.

    PubMed  CAS  Google Scholar 

  4. Perantinides PG, Tsarouhas AP, Katzman VS. The medicolegal risks of thermal injury during laparoscopic monopolar electrosurgery. J Healthc Risk Manag. 1998;18:47–55.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Chandler JG, Voyles CR, Floore TL, Bartholomew LA. Litigious consequences of open and laparoscopic biliary surgical mishaps. J Gastrointest Surg. 1997;1:138–45. discussion 145

    CrossRef  PubMed  CAS  Google Scholar 

  6. Feldman L, Fuchshuber P, Jones DB, editors. The SAGES manual on the fundamental use of surgical energy (FUSE). New York: Springer; 2012.

    Google Scholar 

  7. Sankaranarayanan G, Resapu RR, Jones DB, Schwaitzberg S, De S. Common uses and cited complications of energy in surgery. Surg Endosc. 2013;27:3056–72.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Agarwal BB, Gupta M, Agarwal S, Mahajan K. Anatomical footprint for safe laparoscopic cholecystectomy without using any energy source: a modified technique. Surg Endosc. 2007;21:2154–8.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Polychronidis A, Tsaroucha AK, Karayiannakis AJ, Perente S, Efstathiou E, Simopoulos C. Delayed perforation of the large bowel due to thermal injury during laparoscopic cholecystectomy. J Int Med Res. 2005;33:360–3.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Montero PN, Robinson TN, Weaver JS, Stiegmann GV. Insulation failure in laparoscopic instruments. Surg Endosc. 2010;24:462–5.

    CrossRef  PubMed  Google Scholar 

  11. Tixier F, Garcon M, Rochefort F, Corvaisier S. Insulation failure in electrosurgery instrumentation: a prospective evaluation. Surg Endosc. 2016;30:4995–5001.

    CrossRef  PubMed  Google Scholar 

  12. Vancaillie TG. Active electrode monitoring. How to prevent unintentional thermal injury associated with monopolar electrosurgery at laparoscopy. Surg Endosc. 1998;12:1009–12.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Jones EL, Robinson TN, McHenry JR, Dunn CL, Montero PN, Govekar HR, Stiegmann GV. Radiofrequency energy antenna coupling to common laparoscopic instruments: practical implications. Surg Endosc. 2012;26:3053–7.

    CrossRef  PubMed  Google Scholar 

  14. Robinson TN, Barnes KS, Govekar HR, Stiegmann GV, Dunn CL, McGreevy FT. Antenna coupling--a novel mechanism of radiofrequency electrosurgery complication: practical implications. Ann Surg. 2012;256:213–8.

    CrossRef  PubMed  Google Scholar 

  15. Townsend NT, Jones EL, Paniccia A, Vandervelde J, McHenry JR, Robinson TN. Antenna coupling explains unintended thermal injury caused by common operating room monitoring devices. Surg Laparosc Endosc Percutan Tech. 2015;25:111–3.

    CrossRef  PubMed  Google Scholar 

  16. Postgate A, Saunders B, Tjandra J, Vargo J. Argon plasma coagulation in chronic radiation proctitis. Endoscopy. 2007;39:361–5.

    CrossRef  PubMed  CAS  Google Scholar 

  17. ECRI Institute. Health devices: top 10 health technology hazards for 2011. 2010.

    Google Scholar 

  18. Avgerinos A, Kalantzis N, Rekoumis G, Pallikaris G, Arapakis G, Kanaghinis T. Bowel preparation and the risk of explosion during colonoscopic polypectomy. Gut. 1984;25:361–4.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  19. Keighley MR, Taylor EW, Hares MM, Arabi Y, Youngs D, Bentley S, Burdon DW. Influence of oral mannitol bowel preparation on colonic microflora and the risk of explosion during endoscopic diathermy. Br J Surg. 1981;68:554–6.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Brunt LM. Fundamentals of electrosurgery part II: thermal injury mechanisms and prevention. In: Feldman LS, Fuchshuber P, Jones DB, editors. The SAGES manual on the fundamental use of surgical energy (FUSE). New York: Springer; 2012. p. 61–79.

    CrossRef  Google Scholar 

  21. Jones S, Rozner M. Integration of energy systems with other medical devices. In: Feldman LS, Fuchshuber P, Jones DB, editors. The SAGES manual on the fundamental use of surgical energy (FUSE). New York: Springer; 2012. p. 181–94.

    CrossRef  Google Scholar 

  22. Robinson TN, Varosy PD, Guillaume G, Dunning JE, Townsend NT, Jones EL, Paniccia A, Stiegmann GV, Weyer C, Rozner MA. Effect of radiofrequency energy emitted from monopolar “Bovie” instruments on cardiac implantable electronic devices. J Am Coll Surg. 2014;219:399–406.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen L. Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Madani, A., Mueller, C.L. (2018). Fundamentals of Energy Utilization in the Operating Room. In: Palazzo, F. (eds) Fundamentals of General Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-75656-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75656-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75655-4

  • Online ISBN: 978-3-319-75656-1

  • eBook Packages: MedicineMedicine (R0)