Skip to main content

Fundamentals of Prosthetic Materials for the Abdominal Wall

  • 2221 Accesses

Abstract

The use of mesh in the repair of fascial defects has served as a major advancement in the treatment of hernia disease. Contemporary studies show that prosthetic materials are used in the vast majority of ventral and inguinal hernias as data has consistently supported significant reduction in recurrence rates with their use. Innovative laparoscopic and robotic techniques have only expanded the use of mesh as surgeons can now introduce large prosthetic materials through small incisions to address larger and more complex defects. Concurrently, efforts to engineer the ideal mesh have resulted in a wide array of mesh products on the market. Despite some advances, the key question of what constitutes the ideal mesh continues to evade a definitive answer. Rather, it seems the ideal mesh is the one selected appropriately for the correct patient and operation. Despite this lack of clarity, numerous factors must be taken into consideration when selecting a prosthetic material for patients. These include patient comorbidity, hernia anatomy and surgical history, presence of wound contamination or prior wound complications, anatomic location in need of mesh deployment, defect size, and prevention of mesh contact with the viscera. The purpose of this chapter is to outline objective fundamentals of mesh selection and use for abdominal wall hernia repair to optimize outcomes.

Keywords

  • Prosthetic materials
  • Hernia repair
  • Synthetic mesh
  • Biologic mesh
  • Biosynthetic mesh

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75656-1_13
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-75656-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 13.1

Suggested Readings

  • Novitsky YW. Hernia surgery. Cham: Springer; 2016.

    CrossRef  Google Scholar 

  • Todros S, Pavan PG, Natali AN. Synthetic surgical meshes used in abdominal wall surgery: Part I-materials and structural conformation. J Biomed Mater Res B Appl Biomater. 2017;105(3):689.

    CrossRef  PubMed  CAS  Google Scholar 

References

  1. Wood J. Lectures on hernia and its radical cure. Br Med J. 1885;1:1279–83.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  2. Thomas A, Rogers A. Edoardo Bassini and the wound that inspires. World J Surg. 2004;28(110):1060–2.

    CrossRef  PubMed  Google Scholar 

  3. George CD, Ellis H. The results of incisional hernia repair: a twelve year review. Ann R Coll Surg Engl. 1986;68(4):185–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Usher FC, Ochsner J, Tuttle LLD Jr. Use of Marlex mesh in the repair of incisional hernias. Am Surg. 1958;24:969.

    PubMed  CAS  Google Scholar 

  5. Lichtenstein IL, Shulman AG, Amid PK, et al. The tension free hernioplasty. Am J Surg. 1989;157:188–93.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Scott NW, McCormack K, Graham P, et al. Open mesh versus non-mesh for repair of femoral and inguinal hernia. Cochrane Database Syst Rev. 2002;4:CD002197.

    Google Scholar 

  7. EU Hernia Trialists Collaboration. Repair of groin hernia with synthetic mesh: meta-analysis of randomized controlled trials. Ann Surg. 2002;235:322–32.

    CrossRef  Google Scholar 

  8. EU Hernia Trialists Collaboration. Mesh compared with non-mesh methods of open groin hernia repair: systematic review of randomized controlled trials. Br J Surg. 2000;87:854–9.

    CrossRef  Google Scholar 

  9. Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng. 2000;122:570–5.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Rastegarpour A, Cheung M, Vardhan M, Ibrahim MM, Butler CE, Levinson H. Surgical mesh for ventral incisional hernia repairs: understanding mesh design. Plast Surg. 2016;24(1):41.

    CrossRef  Google Scholar 

  11. Cobb WS, Peindl RM, Zerey M, Carbonell AM, Heniford BT. Mesh terminology 101. Hernia. 2009;13:1–6.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Bilsel Y, Abci I. The search for ideal hernia repair; mesh materials and types. Int J Surg. 2012;10(6):317–21.

    CrossRef  PubMed  Google Scholar 

  13. Martakos P, Karwoski T. Healing characteristics of hybrid and conventional polytetrafluoroethylene vascular grafts. ASAIO J. 1995;41:M735–41.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Klinge U, Klosterhalfen B. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia. 2012;16:251–8.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  15. Collage RD, Rosengart MR. Abdominal wall infections with in situ mesh. Surg Infect. 2010;11:311–8.

    CrossRef  Google Scholar 

  16. Sanchez VM, Abi-Haidar YE, Itani KM. Mesh infection in ventral incisional hernia repair: Incidence, contributing factors, and treatment. Surg Infect. 2011;12:205–10.

    CrossRef  Google Scholar 

  17. Bellon JM, Contreras LA, Bujan J. Ultrastructural alterations of polytetrafluoroethylene prostheses implanted in abdominal wall provoked by infection: Clinical and experimental study. World J Surg. 2000;24:528–31.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Klosterhalfen B, Klinge U, Rosch R, Junge K. Long-term inertness of meshes. In: Schumpelick V, Nyhus L, editors. Meshes: benefits and risks. Berlin: Springer; 2004. p. 170–8.

    CrossRef  Google Scholar 

  19. Enoch S, Leaper DJ. Basic science of wound healing. Surgery. 2005;23:37–42.

    Google Scholar 

  20. Brown CN, Finch JG. Which mesh for hernia repair? Ann R Coll Surg Engl. 2010;92:272–8.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  21. Junge K, Klinge U, Rosch R, et al. Functional and morphologic properties of a modified mesh for inguinal hernia repair. World J Surg. 2002;26:1472–80.

    CrossRef  PubMed  Google Scholar 

  22. Welty G, Kinge U, Klosterhalfen B, et al. Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia. 2001;5:142–7.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Klinge U, Junge K, Stumpf M, et al. Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J Biomed Mater Res. 2002;63:129–36.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Nguyen PT, Asarias JR, Pierce LM. Influence of a new monofilament polyester mesh on inflammation and matrix remodeling. J Investig Surg. 2012;25(5):330.

    CrossRef  Google Scholar 

  25. Brandt CJ, Kammer D, Fiebeler A, Klinge U. Beneficial effects of hydrocortisone or spironolactone coating on foreign body response to mesh biomaterial in a mouse model. J Biomed Mater Res A. 2011;99:335–43.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Asarias JR, et al. Influence of mesh materials on the expression of mediators involved in wound healing. J Investig Surg. 2011;24(2):87–98.

    CrossRef  Google Scholar 

  27. Sanders D, Lambie J, Bond P, Moate R, Steer JA. An in vitro study assessing the effect of mesh morphology and suture fixation on bacterial adherence. Hernia. 2013;17(6):779–89.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Blatnik JA, et al. In vivo analysis of the morphologic characteristics of synthetic mesh to resist MRSA adherence. J Gastrointest Surg. 2012;16(11):2139–44.

    CrossRef  PubMed  Google Scholar 

  29. Bryan N, et al. In vitro activation of human leukocytes in response to contact with synthetic hernia meshes. Clin Biochem. 2012;45(9):672–6.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Orenstein SB, et al. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J Surg Res. 2012;176(2):423–9.

    CrossRef  PubMed  Google Scholar 

  31. Schmidbauer S, et al. Heavy-weight versus low-weight polypropylene meshes for open sublay mesh repair of incisional hernia. Eur J Med Res. 2005;10(6):247–53.

    PubMed  CAS  Google Scholar 

  32. Cobb WS, et al. Textile analysis of heavy weight, midweight, and light weight polypropylene mesh in a porcine ventral hernia model. J Surg Res. 2006;136(1):1–7.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Cobb WS, Kercher KW, Heniford BT. The argument for lightweight polypropylene mesh in hernia repair. Surg Innov. 2005;12(1):63–9.

    CrossRef  PubMed  Google Scholar 

  34. Petro CC, Nahabet EH, Criss CN, Orenstein SB, von Recum HA, Novitsky YW, et al. Central failures of lightweight monofilament polyester mesh causing hernia recurrence: a cautionary note. Hernia. 2015;19(1):155–9.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Todros S, Pavan PG, Natali AN. Synthetic surgical meshes used in abdominal wall surgery: Part I-materials and structural conformation. J Biomed Mater Res B Appl Biomater. 2017;105(3):689.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Gonzalez R, Fugate K, McClusky D, Ritter EM, Lederman A, Dillehay D, Smith CD, Ramshaw BJ. Relationship between tissue ingrowth and mesh contraction. World J Surg. 2005;29:1038–43.

    CrossRef  PubMed  Google Scholar 

  37. Burger JW, Halm JA, Wijsmuller AR, ten Raa S, Jeekel J. Evaluation of new prosthetic meshes for ventral hernia repair. Surg Endosc. 2006;20:1320–5.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Wolstenholme JT. Use of commercial Dacron fabric in the repair of inguinal hernias and abdominal wall defects. Arch Surg. 1956;73:1004–8.

    CrossRef  CAS  Google Scholar 

  39. Maarek JM, Guidoin R, Aubin M, Prud’homme RE. Molecular weight characterization of virgin and explanted polyester arterial prostheses. J Biomed Mater Res. 1984;18:881–94.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res. 2002;63(6):765.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Hanna M, Dissanaike S. Mesh ingrowth with concomitant bacterial infection resulting in inability to explant: a failure of mesh salvage. Hernia. 2015;19(2):339.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Medtronic. Hernia repair. http://www.medtronic.com/covidien/products/hernia-repair/. Accessed 11 May 2017.

  43. Cobb WS, Kercher KW, Heniford BT. Laparoscopic repair of incisional hernias. Surg Clin North Am. 2005;85:91–103.

    CrossRef  PubMed  Google Scholar 

  44. Robinson TN, Clarke JH, Schoen J, Walsh MD. Major mesh related complications following hernia repair. Surg Endosc. 2005;19:1556–60.

    CrossRef  PubMed  CAS  Google Scholar 

  45. Read RC. Milestones in the history of hernia surgery: prosthetic repair. Hernia. 2004;8:8–14.

    CrossRef  PubMed  Google Scholar 

  46. Majumder A, Winder JS, Wen Y, Pauli EM, Belyansky I, Novitsky YW. Comparative analysis of biologic versus synthetic mesh outcomes in contaminated hernia repairs. Surgery. 2016;160(4):828.

    CrossRef  PubMed  Google Scholar 

  47. Laroche G, Marois Y, Guidoin R, King MW, Martin L, How T, Douville Y. Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture. J Biomed Mater Res. 1995;29:1525–36.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V. PVDF as a new polymer for the construction of surgical meshes. Biomaterials. 2002;23:3487–93.

    CrossRef  PubMed  CAS  Google Scholar 

  49. Laroche G, Marois Y, Schwarz E, Guidoin R, King MW, Paris E, Douville Y. Polyvinylidene fluoride monofilament sutures: can they be used safely for long-term anastomoses in the thoracic aorta? Artif Organs. 1995;19:1190–9.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Dayton MT, Buchele BA, Shirazi SS, Hunt LB. Use of an absorbable mesh to repair contaminated abdominal-wall defects. Arch Surg. 1986;121:954–60.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Novitsky YW. Hernia surgery. Cham: Springer; 2016.

    CrossRef  Google Scholar 

  52. Engelsman AF, van der Mei HC, Ploeg RJ, Busscher HJ. The phenomenon of infection with abdominal wall reconstruction. Biomaterials. 2007;28:2314–27.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Rosen MJ, Bauer JJ, Harmaty M, et al. Multicenter, prospective, longitudinal study of the recurrence, surgical site infection, and quality of life after contaminated ventral hernia repair using biosynthetic absorbable mesh: the COBRA study. Ann Surg. 2017;265(1):205–11.

    CrossRef  PubMed  Google Scholar 

  54. Deeken CR, Matthews BD. Characterization of the mechanical strength, resorption properties, and histologic characteristics of a fully absorbable material (poly-4-hydroxybutyrate-PHASIX mesh) in a porcine model of hernia repair. ISRN Surg. 2013;2013:238067.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Martin DP, Badhwar A, Shah DV, et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications. J Surg Res. 2013;184:766–73.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Hjort H, Mathisen T, Alves A, Clermont G, Boutrand JP. Three year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics. Hernia. 2012;16:191–7.

    CrossRef  PubMed  CAS  Google Scholar 

  57. Peeters E, van Barneveld KW, Schreinemacher MH, et al. One-year outcome of biological and synthetic bioabsorbable meshes for augmentation of large abdominal wall defects in a rabbit model. J Surg Res. 2013;180:274–83.

    CrossRef  PubMed  CAS  Google Scholar 

  58. Ruiz-Jasbon F, Norrby J, Ivarsson ML, Bjorck S. Inguinal hernia repair using a synthetic long-term resorbable mesh: results from a 3-year prospective safety and performance study. Hernia. 2014;18:723–30.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang AY, Bates SJ, Morrow E, Pham H, Pham B, Chang J. Tissue-engineered intrasynovial tendons: optimization of acellularization and seeding. J Rehabil Res Dev. 2009;46:489–98.

    CrossRef  PubMed  Google Scholar 

  60. Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg. 2004;127:399–405.

    CrossRef  PubMed  Google Scholar 

  61. Cartmell JS, Dunn MG. Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res. 2000;49:134–40.

    CrossRef  PubMed  CAS  Google Scholar 

  62. Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials. 2005;26:7339–49.

    CrossRef  PubMed  CAS  Google Scholar 

  63. Deeken CR, White AK, Bachman SL, Ramshaw BJ, Cleveland DS, Loy TS, et al. Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res B Appl Biomater. 2011;96:199–206.

    CrossRef  PubMed  CAS  Google Scholar 

  64. Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res Part A. 2006;79:254–62.

    CrossRef  CAS  Google Scholar 

  65. Lynch AP, Ahearne M. Strategies for developing decellularized corneal scaffolds. Exp Eye Res. 2013;108:42–7.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Gillies AR, Smith LR, Lieber RL, Varghese S. Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng Part C Methods. 2011;17:383–9.

    CrossRef  PubMed  CAS  Google Scholar 

  67. Gratzer PF, Harrison RD, Woods T. Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng. 2006;12:2975–83.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Horowitz B, Bonomo R, Prince AM, Chin SN, Brotman B, Shulman RW. Solvent/detergent-treated plasma: a virus-inactivated substitute for fresh frozen plasma. Blood. 1992;79:826–31.

    PubMed  CAS  Google Scholar 

  69. Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng. 2014;42:1517–27.

    CrossRef  PubMed  Google Scholar 

  70. Scales JT. Tissue reactions to synthetic materials. Proc R Soc Med. 1953;46:647–52.

    PubMed  CAS  Google Scholar 

  71. Damink LHHO, Dijkstra PJ, vanLuyn MJA, van-Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17:765–73.

    CrossRef  Google Scholar 

  72. Abraham GA, Murray J, Billiar K, Sullivan SJ. Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res. 2000;51:442–52.

    CrossRef  PubMed  CAS  Google Scholar 

  73. Billiar K, Murray J, Laude D, Abraham G, Bachrach N. Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa. J Biomed Mater Res. 2001;56:101–8.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J. vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials. 1996;17:679–84.

    CrossRef  PubMed  CAS  Google Scholar 

  75. Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18:95–105.

    CrossRef  PubMed  CAS  Google Scholar 

  76. Courtman DW, Errett BF, Wilson GJ. The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J Biomed Mater Res. 2001;55:576–86.

    CrossRef  PubMed  CAS  Google Scholar 

  77. HardinYoung J, Carr RM, Downing GJ, Condon KD, Termin PL. Modification of native collagen reduces antigenicity but preserves cell compatibility. Biotechnol Bioeng. 1996;49:675–82.

    CrossRef  CAS  Google Scholar 

  78. Tiengo C, Giatsidis G, Azzena B. Fascialata allografts as biological mesh in abdominal wall repair: preliminary outcomes from a retrospective case series. Plast Reconstr Surg. 2013;132:631E–9E.

    CrossRef  PubMed  CAS  Google Scholar 

  79. Miyamoto Y, Watanabe M, Ishimoto T, Baba Y, Iwagami S, Sakamoto Y, Yoshida N, Masuguchi S, Ihn H, Baba H. Fascialata on lay patch for repairing infected incisional hernias. Surg Today. 2015;45:121–4.

    CrossRef  PubMed  Google Scholar 

  80. Kama NA, Coskun T, Yavuz H, Doganay M, Reis E, Akat AZ. Autologous skin graft, human dura mater and polypropylene mesh for the repair of ventral abdominal hernias: an experimental study. Eur J Surg. 1999;165:1080–5.

    CrossRef  PubMed  CAS  Google Scholar 

  81. Beale EW, Hoxworth RE, Livingston EH, Trussler AP. The role of biologic mesh in abdominal wall reconstruction: a systematic review of the current literature. Am J Surg. 2012;204:510–7.

    CrossRef  PubMed  Google Scholar 

  82. Slater NJ, van der Kolk M, Hendriks T, van Goor H, Bleichrodt RP. Biologic grafts for ventral hernia repair: a systematic review. Am J Surg. 2013;205:220–30.

    CrossRef  PubMed  Google Scholar 

  83. Smart NJ, Marshall M, Daniels IR. Biological meshes: a review of their use in abdominal wall hernia repairs. Surgeon. 2012;10:159–71.

    CrossRef  PubMed  Google Scholar 

  84. Novitsky YW, Rosen MJ. The biology of biologics: basic science and clinical concepts. Plast Reconstr Surg. 2012;130:9S–17S.

    CrossRef  PubMed  CAS  Google Scholar 

  85. Clemens MW, Selber JC, Liu J, et al. Bovine versus porcine acellular dermal matrix for complex abdominal wall reconstruction. Plast Reconstr Surg. 2013;131:71–9.

    CrossRef  PubMed  CAS  Google Scholar 

  86. Butler CE, Burns NK, Campbell KT, Mathur AB, Jaffari MV, Rios CN. Comparison of cross-linked and non-cross-linked porcine acellular dermal matrices for ventral hernia repair. J Am Coll Surg. 2010;211:368–76.

    CrossRef  PubMed  Google Scholar 

  87. Peppas G, Gkegkes ID, Makris MC, Falagas ME. Biological mesh in hernia repair, abdominal wall defects, and reconstruction and treatment of pelvic organ prolapse: a review of the clinical evidence. Am Surg. 2010;76:1290–9.

    PubMed  Google Scholar 

  88. Bellows CF, Smith A, Malsbury J, Helton WS. Repair of incisional hernias with biological prosthesis: a systematic review of current evidence. Am J Surg. 2013;205:85–101.

    CrossRef  PubMed  Google Scholar 

  89. Ditzel M, Deerenberg EB, Grotenhuis N, et al. Biologic meshes are not superior to synthetic meshes in ventral hernia repair: an experimental study with long-term follow-up evaluation. Surg Endosc. 2013;27:3654–62.

    CrossRef  PubMed  CAS  Google Scholar 

  90. Hiles M, Record Ritchie RD, Altizer AM. Are biologic grafts effective for hernia repair? A systematic review of the literature. Surg Innov. 2009;16:26–37.

    CrossRef  PubMed  Google Scholar 

  91. Falagas ME, Kasiakou SK. Mesh-related infections after hernia repair surgery. Clin Microbiol Infect. 2005;11:3–8.

    CrossRef  PubMed  CAS  Google Scholar 

  92. Coda A, Botto-Micca F, Botto-Micca F. Reoperations for chronic infections following prosthetic hernia repair. Hernia. 1998;2:163–7.

    CrossRef  Google Scholar 

  93. Leber GE, Garb JL, Alexander AI, et al. Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg. 1998;133:378–82.

    CrossRef  PubMed  CAS  Google Scholar 

  94. Bueno-Lledó J, Torregrosa-Gallud A, Sala-Hernandez A, Carbonell-Tatay F, Pastor PG, Diana SB, et al. Predictors of mesh infection and explantation after abdominal wall hernia repair. Am J Surg. 2017;213(1):50.

    CrossRef  PubMed  Google Scholar 

  95. Bueno J, Sosa Y, Gomez I, et al. Infeccion de la protesis en la reparacion herniaria. Nuestra experiencia en 5 anos. Cir Esp. 2009;85:158–63.

    CrossRef  Google Scholar 

  96. Petersen S, Henke G, Freitag M, et al. Deep prosthesis infection in incisional hernia repair: predictive factors and clinical outcome. Eur J Surg. 2001;167:453–7.

    CrossRef  CAS  PubMed  Google Scholar 

  97. Mann D, Prout J, Havranek E, et al. Late-onset deep prosthetic infection following mesh repair of inguinal hernia. Am J Surg. 1998;176:12–4.

    CrossRef  PubMed  CAS  Google Scholar 

  98. Dunne JR, Malone DL, Tracy JK, et al. Abdominal wall hernias: risk factors for infection and resource utilization. J Surg Res. 2003;111:78–84.

    CrossRef  PubMed  Google Scholar 

  99. Neumayer L, Giobbie-Hurder A, Jonasson O, et al. Open mesh versus laparoscopic mesh repair of inguinal hernia. N Engl J Med. 2004;350:1819–27.

    CrossRef  PubMed  CAS  Google Scholar 

  100. Gonzalez AU, De la Portilla F, Albarran GC. Large incisional hernia repair using intraperitoneal placement of ePTFE. Am J Surg. 1999;177:291–3.

    CrossRef  Google Scholar 

  101. LeBlanc KA. Laparoscopic incisional and ventral hernia repair: how to avoid and handle complications. Hernia. 2004;8:323–31. 24

    CrossRef  CAS  PubMed  Google Scholar 

  102. Berger D, Bientzle M, Muller A. Postoperative complications after laparoscopic incisional hernia repair. Surg Endosc. 2002;16:1720–3.

    CrossRef  CAS  PubMed  Google Scholar 

  103. Lazorthes F, Chiotasso P, Massip P, et al. Local antibiotic prophylaxis in inguinal hernia repair. Surg Gynecol Obstet. 1992;175:569–70.

    PubMed  CAS  Google Scholar 

  104. Musella M, Guido A, Musella S. Collagen tampons as aminoglycoside carriers to reduce postoperative infection rate in prosthetic repair of groin hernias. Eur J Surg. 2001;167(2):130.

    CrossRef  PubMed  CAS  Google Scholar 

  105. Wiegering A, Sinha B, Spor L, et al. Gentamicin for prevention of intraoperative mesh contamination: demonstration of high bactericide effect (in vitro) and low systemic bioavailability (in vivo). Hernia. 2014;18:691–700.

    CrossRef  PubMed  CAS  Google Scholar 

  106. Reslinski A, Dabrowiecki S, Gowacka K. The impact of diclofenac and ibuprofen on biofilm formation on the surface of polypropylene mesh. Hernia. 2015;19:179–85.

    CrossRef  PubMed  CAS  Google Scholar 

  107. Simons MP, Aufenacker T, Bay-Nielsen M, et al. European Hernia Society guidelines on the treatment of inguinal hernia in adult patients. Hernia. 2009;13:343–403.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  108. Köckerling F, Bittner R, Jacob D, Schug-Pass C, Laurenz C, Adolf D, et al. Do we need antibiotic prophylaxis in endoscopic inguinal hernia repair? Results of the Herniamed Registry. Surg Endosc. 2015;29(12):3741.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  109. The Centers for Medicare and Medicaid Services. Surgical care improvement project. https://innovation.cms.gov/Files/x/ACE-Quality-Measures.pdf. Accessed 13 Aug 2017.

  110. Junge K, Rosch R, Klinge U, et al. Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials. 2005;26:787–93.

    CrossRef  PubMed  CAS  Google Scholar 

  111. Klink CD, Binnebosel M, Lambertz A, et al. In vitro and in vivo characteristics of gentamicin-supplemented poly-vinylidenfluoride mesh materials. J Biomed Mater Res A. 2012;100:1195–202.

    CrossRef  PubMed  CAS  Google Scholar 

  112. Junge K, Klinge U, Rosch R, et al. Improved collagen type I/III ratio at the interface of gentamicin-supplemented polyvinylidenfluoride mesh materials. Langenbeck’s Arch Surg. 2007;392:465–71.

    CrossRef  Google Scholar 

  113. Binnebosel M, von Trotha KT, Ricken C, et al. Gentamicin supplemented polyvinylidenfluoride mesh materials enhance tissue integration due to a transcriptionally reduced MMP-2 protein expression. BMC Surg. 2012;12:1.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  114. Fernandez-Gutierrez M, Olivares E, Pascual G, et al. Low-density polypropylene meshes coated with resorbable and biocompatible hydrophilic polymers as controlled release agents of antibiotics. Acta Biomater. 2013;9:6006–18.

    CrossRef  PubMed  CAS  Google Scholar 

  115. Guillaume O, Garric X, Lavigne JP, et al. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release. 2012;162:492–501.

    CrossRef  PubMed  CAS  Google Scholar 

  116. Letouzey V, Lavigne JP, Garric X, et al. Is degradable antibiotic coating for synthetic meshes provide protection against experimental animal infection after fascia repair? J Biomed Mater Res B Appl Biomater. 2012;100:471–9.

    CrossRef  PubMed  CAS  Google Scholar 

  117. Laurent T, Kacem I, Blanchemain N, et al. Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. Acta Biomater. 2011;7:3141–9.

    CrossRef  PubMed  CAS  Google Scholar 

  118. Harth KC, Rosen MJ, Thatiparti TR, et al. Antibiotic releasing mesh coating to reduce prosthetic sepsis: an in vivo study. J Surg Res. 2010;163:337–43.

    CrossRef  PubMed  CAS  Google Scholar 

  119. Guillaume O, Lavigne JP, Lefranc O, et al. New antibiotic eluting mesh used for soft tissue reinforcement. Acta Biomater. 2011;7:3390–7.

    CrossRef  PubMed  CAS  Google Scholar 

  120. Saldarriaga Fernandez IC, Mei HC, Metzger S, et al. In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly(ethylene glycol)-based polymer coating. Acta Biomater. 2010;6:1119–24.

    CrossRef  PubMed  CAS  Google Scholar 

  121. Legeay G, Poncin-Epaillard F, Arciola CR. New surfaces with hydrophilic/hydrophobic characteristics in relation to (no)bioadhesion. Int J Artif Organs. 2006;29:453–61.

    CrossRef  PubMed  CAS  Google Scholar 

  122. Yurko Y, McDeavitt K, Kumar RS, et al. Antibacterial mesh: a novel technique involving naturally occurring cellular proteins. Surg Innov. 2012;19:20–6.

    CrossRef  PubMed  Google Scholar 

  123. von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65:179–214.

    CrossRef  Google Scholar 

  124. Belyansky I, Tsirline VB, Montero PN, et al. Lysostaphin coated mesh prevents staphylococcal infection and significantly improves survival in a contaminated surgical field. Am Surg. 2011;77:1025–31.

    PubMed  Google Scholar 

  125. Belyansky I, Tsirline VB, Martin TR, et al. The addition of lysostaphin dramatically improves survival, protects porcine biomesh from infection, and improves graft tensile shear strength. J Surg Res. 2011;171:409–15.

    CrossRef  PubMed  CAS  Google Scholar 

  126. Satishkumar R, Sankar S, Yurko Y, et al. Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob Agents Chemother. 2011;55:4379–85.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  127. Dinjaski N, Fernandez-Gutierrez M, Selvam S, et al. PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus. Biomaterials. 2014;35:14–24.

    CrossRef  PubMed  CAS  Google Scholar 

  128. Zhai H, Pan J, Pang E, Bai B. Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One. 2014;9:e102760.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  129. Edmiston CE, Seabrook GR, Goheen MP, et al. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg. 2006;203:481–9.

    CrossRef  PubMed  Google Scholar 

  130. Rasic Z, Schwarz D, Adam VN, et al. Efficacy of antimicrobial triclosan-coated polyglactin 910 (Vicryl_Plus) suture for closure of the abdominal wall after colorectal surgery. Coll Antropol. 2011;35:439–43.

    PubMed  CAS  Google Scholar 

  131. Hoshino S, Yoshida Y, Tanimura S, et al. A study of the efficacy of antibacterial sutures for surgical site infection: a retrospective controlled trial. Int Surg. 2013;98:129–32.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  132. Cxakmak A, Cirpanli Y, Bilensoy E, et al. Antibacterial activity of triclosan chitosan coated graft on hernia graft infection model. Int J Pharm. 2009;381:214–9.

    CrossRef  CAS  Google Scholar 

  133. Trunzo JA, Ponsky JL, Jin J, et al. A novel approach for salvaging infected prosthetic mesh after ventral hernia repair. Hernia. 2009;13:545–9.

    CrossRef  CAS  PubMed  Google Scholar 

  134. Hawn M, Gray S, Snyder C, et al. Predictors of mesh explantation after incisional hernia repair. Am J Surg. 2011;202:28–33.

    CrossRef  PubMed  Google Scholar 

  135. Brown RH, Subramanian A, Hwang CS, et al. Comparison of infectious complications with synthetic mesh in ventral hernia repair. Am J Surg. 2013;205:182–7.

    CrossRef  PubMed  Google Scholar 

  136. Breuing K, Butler CE, Ferzoco S, et al. Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. Surgery. 2010;148:544–58.

    CrossRef  PubMed  Google Scholar 

  137. Novitsky YW, Elliott HL, Orenstein SB, et al. Transversus abdominis muscle release: a novel approach to posterior component separation during complex abdominal wall reconstruction. Am J Surg. 2012;204:709–16.

    CrossRef  PubMed  Google Scholar 

  138. Mason RJ, Moazzez A, Sohn HJ, et al. Laparoscopic versus open anterior abdominal wall hernia repair: 30-day morbidity and mortality using the ACS-NSQIP database. Ann Surg. 2011;254(4):641–52.

    CrossRef  PubMed  Google Scholar 

  139. Heniford BT, Park A, Ramshaw BJ, et al. Laparoscopic repair of ventral hernias: nine years’ experience with 850 consecutive hernias. Ann Surg. 2003;238:391–9.

    PubMed  PubMed Central  Google Scholar 

  140. Itani KM, Hur K, Kim LT, et al. Comparison of laparoscopic and open repair with mesh for the treatment of ventral incisional hernia: a randomized trial. Arch Surg. 2010;145:322–8.

    CrossRef  PubMed  Google Scholar 

  141. Sauerland S, Walgenbach M, Habermalz B, et al. Laparoscopic versus open surgical techniques for ventral or incisional hernia repair. Cochrane Database Syst Rev. 2011;3:CD007781.

    Google Scholar 

  142. Salvilla SA, Thusu S, Panesar SS. Analyzing the benefits of laparoscopic hernia repair compared to open repair: a meta-analysis of observational studies. J Minim Access Surg. 2012;8:111–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  143. Zhang Y, Zhou H, Chai Y, et al. Laparoscopic versus open incisional and ventral hernia repair: a systematic review and meta-analysis. World J Surg. 2014;38:2233–40.

    CrossRef  PubMed  Google Scholar 

  144. Weltz AS, Turcotte JT, Sibia US, Zakharov E, Wu N, Turner TR, Zahiri HR, Belyansky I. The trend toward minimally invasive complex abdominal wall reconstruction: is it worth it? Surg Endosc. 2017. https://doi.org/10.1007/s00464-017-5850-0.

  145. Martin-del-Campo LA, Weltz AS, Belyansky I, Novitsky YW. Comparative analysis of perioperative outcomes of robotic versus open transversus abdominis release. Surg Endosc. 2016;32(2):840–5.

    CrossRef  Google Scholar 

  146. Savitch SL, Shah PC. Closing the gap between the laparoscopic and open approaches to abdominal wall hernia repair: a trend and outcomes analysis of the ACS-NSQIP database. Surg Endosc. 2016;30(3):3267–78.

    CrossRef  PubMed  Google Scholar 

  147. Chamieh J, Tan WH, Ramirez R, Nohra E, Apakama C, Symons W. Synthetic versus biologic mesh in single-stage repair of complex abdominal wall defects in a contaminated field. Surg Infect. 2017;18(2):112–8.

    CrossRef  Google Scholar 

  148. Reynolds D, Davenport DL, Korosec RL, Roth JS. Financial implications of ventral hernia repair: a hospital cost analysis. J Gastrointest Surg. 2013;17(1):159–66.

    CrossRef  PubMed  Google Scholar 

  149. Hawn MT, Snyder CW, Graham LA, Gray SH, Finan KR, Vick CC. Long-term follow-up of technical outcomes for incisional hernia repair. J Am Coll Surg. 2010;210(5):648–55.

    CrossRef  PubMed  Google Scholar 

  150. de Vries Reilingh TS, van Geldere D, Langenhorst B, de Jong D, van der Wilt GJ, van Goor H, Bleichrodt RP. Repair of large midline incisional hernias with polypropylene mesh: comparison of three operative techniques. Hernia. 2004;8(1):56–9.

    CrossRef  PubMed  Google Scholar 

  151. Rives J, Lardennois B, Pire JC, Hibon J. Large incisional hernias. The importance of flail abdomen and of subsequent respiratory disorders. Chirurgie. 1973;99(8):547–63.

    PubMed  CAS  Google Scholar 

  152. Belyansky I, Zahiri HR, Park A. Laparoscopic transversus abdominis release, a novel minimally invasive approach to complex abdominal wall reconstruction. Surg Innov. 2016;23(2):134.

    CrossRef  PubMed  Google Scholar 

  153. Stoppa RE. The treatment of complicated groin and incisional hernias. World J Surg. 1989;13(5):545–54.

    CrossRef  PubMed  CAS  Google Scholar 

  154. Albino FP, Patel KM, Nahabedian MY, Sosin M, Attinger CE, Bhanot P. Does mesh location matter in abdominal wall reconstruction? A systematic review of the literature and a summary of recommendations. Plast Reconstr Surg. 2013;132(5):1295–304.

    CrossRef  PubMed  CAS  Google Scholar 

  155. Cheesborough JE, Dumanian GA. Simultaneous prosthetic mesh abdominal wall reconstruction with abdominoplasty for ventral hernia and severe rectus diastasis repairs. Plast Reconstr Surg. 2015;135:268–76.

    CrossRef  PubMed  CAS  Google Scholar 

  156. Novitsky YW, Fayezizadeh M, Orenstein SB. Outcomes of posterior component separation with transversus abdominis muscle release and synthetic mesh sublay reinforcement. Ann Surg. 2016;264:226–32.

    CrossRef  PubMed  Google Scholar 

  157. Hirsch H, Nagatomo K, Gefen J, et al. Mesh fixation with fibrin sealant in totally extraperitoneal hernia repair. J Laparoendosc Adv Surg Tech A. 2016;27(3):259–63.

    CrossRef  PubMed  Google Scholar 

  158. Berney CR, Descallar J. Review of 1000 fibrin glue mesh fixation during endoscopic totally extraperitoneal (TEP) inguinal hernia repair. Surg Endosc. 2016;30(10):4544–52.

    CrossRef  PubMed  Google Scholar 

  159. Kukleta JF, Freytag C, Weber M. Efficiency and safety of mesh fixation in laparoscopic inguinal hernia repair using n-butyl cyanoacrylate: long-term biocompatibility in over 1300 mesh fixations. Hernia. 2012;16(2):153–62.

    CrossRef  PubMed  CAS  Google Scholar 

  160. Iqbal CW, Pham TH, Joseph A, et al. Long-term outcome of 254 complex incisional hernia repairs using the modified Rives-Stoppa technique. World J Surg. 2007;31:2398–404.

    CrossRef  PubMed  Google Scholar 

  161. Hanna EM, Byrd JF, Moskowitz M, et al. Outcomes of a prospective multi-center trial of a second-generation composite mesh for open ventral hernia repair. Hernia. 2014;18(1):81–9.

    CrossRef  PubMed  CAS  Google Scholar 

  162. Vermeulen J, Alwayn I, Stassen LP. Prolonged abdominal wall pain caused by transfascial sutures used in the laparoscopic repair of incisional hernia. Surg Endosc. 2003;17(9):1497.

    CrossRef  PubMed  CAS  Google Scholar 

  163. LeBlanc KA. Laparoscopic incisional hernia repair: are transfascial sutures necessary? A review of the literature. Surg Endosc. 2007;21(4):508–13.

    CrossRef  CAS  PubMed  Google Scholar 

  164. Brill JB, Turner PL. Long-term outcomes with transfascial sutures versus tacks in laparoscopic ventral hernia repair: a review. Am Surg. 2011;77(4):458–65.

    PubMed  Google Scholar 

  165. Weltz AS, Sibia US, Zahiri HR, Schoeneborn A, Park A, Belyansky I. Operative outcomes after open abdominal wall reconstruction with retromuscular mesh fixation using fibrin glue versus transfascial sutures. Am Surg. 2017;83(9):937–42.

    PubMed  Google Scholar 

  166. Azoury SC, Rodriquez-Unda Nm Soares KC, et al. The effect of TISSEEL fibrin sealant on seroma formation following complex abdominal wall hernia repair: a single institutional review and derived cost analysis. Hernia. 2015;19(6):935–42.

    CrossRef  PubMed  CAS  Google Scholar 

  167. Canziani M, Frattini F, Cavalli M, et al. Sutureless mesh fibrin glue incisional hernia repair. Hernia. 2009;13(6):625.

    CrossRef  PubMed  CAS  Google Scholar 

  168. Köhler G, Koch OO, Antoniou SA, et al. Prevention of subcutaneous seroma formation in open ventral hernia repair using a new low-thrombin fibrin sealant. World J Surg. 2014;38(11):2797.

    CrossRef  PubMed  Google Scholar 

  169. Sadava EE, Krpata DM, Gao Y, et al. Wound healing process and mediators: implications for modulations for hernia repair and mesh integration. J Biomed Mater Res A. 2014;102(1):295–302.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Belyansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sibia, U.S., Weltz, A.S., Zahiri, H.R., Belyansky, I. (2018). Fundamentals of Prosthetic Materials for the Abdominal Wall. In: Palazzo, F. (eds) Fundamentals of General Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-75656-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75656-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75655-4

  • Online ISBN: 978-3-319-75656-1

  • eBook Packages: MedicineMedicine (R0)