Skip to main content

Approximative Solutions to Autonomous Difference Equations of Neutral Type

  • Conference paper
  • First Online:
Differential and Difference Equations with Applications (ICDDEA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 230))

  • 894 Accesses

Abstract

Asymptotic properties of solutions to difference equations of the form

$$ \varDelta ^m(x_n-u_nx_{n-k})=a_nf(x_{\sigma (n)})+b_n $$

Using a new version of the Krasnoselski fixed point theorem and the iterated remainder operator, we establish sufficient conditions under which a given solution of the equation

$$ \varDelta ^m(x_n-u_nx_{n-k})=b_n $$

is an approximative solution to the above equation. Our approach, based on the iterated remainder operator, allows us to control the degree of approximation. We use \(\mathrm {o}(n^s)\), for a given nonpositive real s, as a measure of approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatzarakis, G.E., Diblik, J., Miliaras, G.N., Stavroulakis, I.P.: Classification of neutral difference equations of any order with respect to the asymptotic behavior of their solutions. Appl. Math. Comput. 228, 77–90 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Dzurina, J.: Asymptotic behavior of solutions of neutral nonlinear differential equations. Arch. Math. 38(4), 319–325 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Guo, Z., Liu, M.: Existence of non-oscillatory solutions for a higher-order nonlinear neutral difference equation. Electron. J. Differ. Equ. 146, 1–7 (2010)

    Google Scholar 

  4. Hasanbulli, M., Rogovchenko, Y.V.: Asymptotic behavior of nonoscillatory solutions to n-th order nonlinear neutral differential equations. Nonlinear Anal. 69, 1208–1218 (2008)

    Article  MathSciNet  Google Scholar 

  5. Jankowski, R., Schmeidel, E.: Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discret. Contin. Dyn. Syst. (B) 19(8), 2691–2696 (2014)

    Article  MathSciNet  Google Scholar 

  6. Liu, M., Guo, Z.: Solvability of a higher-order nonlinear neutral delay difference equation. Adv. Differ. Equ. Art. ID 767620, 14 pp (2010)

    Google Scholar 

  7. Liu, Z., Xu, Y., Kang, S.M.: Global solvability for a second order nonlinear neutral delay difference equation. Comput. Math. Appl. 57(4), 587–595 (2009)

    Article  MathSciNet  Google Scholar 

  8. Liu, Z., Jia, M., Kang, S.M., Kwun, Y.C.: Bounded positive solutions for a third order discrete equation. Abstr. Appl. Anal. Art. ID 237036, 12 pp (2012)

    Google Scholar 

  9. Liu, Z., Sun, W., Ume, J.S., Kang, S.M.: Positive solutions of a second-order nonlinear neutral delay difference equation. Abstr. Appl. Anal. Art. ID 172939, 30 pp (2012)

    Google Scholar 

  10. Migda, J.: Iterated remainder operator, tests for multiple convergence of series and solutions of difference equations. Adv. Differ. Equ. 2014(189), 1–18 (2014)

    MathSciNet  Google Scholar 

  11. Migda, J.: Approximative solutions of difference equations. Electron. J. Qual. Theory Differ. Equ. 13, 1–26 (2014)

    Google Scholar 

  12. Migda, J.: Approximative solutions to difference equations of neutral type. Appl. Math. Comput. 268, 763–774 (2015)

    MathSciNet  Google Scholar 

  13. Migda, J.: Asymptotically polynomial solutions to difference equations of neutral type. Appl. Math. Comput. 279, 16–27 (2016)

    Article  MathSciNet  Google Scholar 

  14. Migda, M., Migda, J.: On a class of first order nonlinear difference equations of neutral type. Math. Comput. Model. 40, 297–306 (2004)

    Article  MathSciNet  Google Scholar 

  15. Migda, M., Migda, J.: Oscillatory and asymptotic properties of solutions of even order neutral difference equations. J. Differ. Equ. Appl. 15(11–12), 1077–1084 (2009)

    Article  MathSciNet  Google Scholar 

  16. Zhou, Y., Zhang, B.G.: Existence of nonoscillatory solutions of higher-order neutral delay difference equations with variable coefficients. Comput. Math. Appl. 45(6–9), 991–1000 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Migda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Migda, J. (2018). Approximative Solutions to Autonomous Difference Equations of Neutral Type. In: Pinelas, S., Caraballo, T., Kloeden, P., Graef, J. (eds) Differential and Difference Equations with Applications. ICDDEA 2017. Springer Proceedings in Mathematics & Statistics, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-75647-9_26

Download citation

Publish with us

Policies and ethics