Types, Fabrication, and Characterization of Solid Oxide Fuel Cells

  • Ryszard Kluczowski
  • Michał Kawalec
  • Mariusz Krauz
  • Adam Świeca
Part of the Green Energy and Technology book series (GREEN)


In this chapter, the construction, principle of operation, types and production technologies of SOFCs are presented and characterized. Three main types of SOFC are described according to the type of support layer responsible for the mechanical strength of the cell: electrolyte-supported solid oxide fuel cells (ES-SOFC), anode-supported solid oxide fuel cells (AS-SOFC), and metal-supported solid oxide fuel cells (MS-SOFC). Base and raw materials for particular functional layers of solid oxide fuel cells are characterized, i.e., anode, electrolyte, and cathode layers. Thick- and thin-film technologies for the production of particular elements of SOFC fuel cells are presented. Using the example of technology developed in the Institute of Power Engineering Ceramic Department CEREL, the production technology of anode-supported solid oxide fuel cells and the method of characterizing the microstructure and electrochemical properties of the produced cells are presented.


Solid oxide fuel cells SOFC Electrolyte materials Anode materials Cathode materials High pressure injection molding 


  1. 1.
    Adams T, Barton I (2010) High-efficiency power production from natural gas with carbon capture. J Pow Sour 195(7):1971–1983CrossRefGoogle Scholar
  2. 2.
    Siefert NS, Litster S (2013) Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants. App Ener 107:315–328CrossRefGoogle Scholar
  3. 3.
    Siefert NS, Chang BY, Litster S (2014) Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS. App Ener 128:230–245CrossRefGoogle Scholar
  4. 4.
    Kupecki J, Jewulski J, Motylinski K (2015) Parametric evaluation of a micro-CHP unit with solid oxide fuel cells integrated with oxygen transport membranes. Int J Hydr Ener 40(35):11633–11640CrossRefGoogle Scholar
  5. 5.
    Santarelli M, Briesemeister L, Gandiglio M (2017) Carbon recovery and re-utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC): analysis through a proof-of-concept. J CO2 Util 18:206–221CrossRefGoogle Scholar
  6. 6.
    Romano P (2018) DEMOSOFC. In: Gilardoni A (ed) The Italian water industry. Springer, ChamGoogle Scholar
  7. 7.
    EG&G Technical Services, Inc. (2004) Fuel cell handbook, 7th edn. Morgantown, West VirginiaGoogle Scholar
  8. 8.
    Molenda J (2007) High-temperature fuel cells. Bull Pol Hydrog Fuel Cells Assoc 2:49–58 [in Polish]Google Scholar
  9. 9.
    Lis B, Dudek M, Tomczyk P (2014) Synthesis and physicochemical properties of ceramics proton conductors containing modified BaCe0,9Y0,1O3. Chem Ind 93(12):2042–2047 [in Polish]Google Scholar
  10. 10.
    Staffell I, Brett DJ, Brandon NP et al (2015) Domestic microgeneration: renewable and distributed energy technologies, policies and economics. RoutledgeGoogle Scholar
  11. 11.
    Chen BJ, Cheng L, Fang ZH (2012) Solid oxide fuel cells for building applications. Advan Mat Res 347:3083–3086Google Scholar
  12. 12.
    Staffel A, Brett I, Brandon D (2009) Fuel cells for micro-combined heat and power generation. Energy and environmental science. JO Energy Environ Sci 2(7):729–744CrossRefGoogle Scholar
  13. 13.
    Kupecki J (2015) Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. Int J Hydr Ener 40(35):12009–12022CrossRefGoogle Scholar
  14. 14.
    Kupecki J, Skrzypkiewicz M, Stefanski M et al (2016) Selected aspects of the design and operation of the first Polish residential micro-CHP unit based on solid oxide fuel cells. J Pow Tech 96(4):270–275Google Scholar
  15. 15.
    Kupecki J, Skrzypkiewicz M, Wierzbicki M et al (2017) Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. Int J Hydr Ener 42(5):3487–3497CrossRefGoogle Scholar
  16. 16.
    Kupecki J, Badyda K (2011) SOFC-based micro-CHP system as an example of efficient power generation unit. Arch Therm 32(3):33–43Google Scholar
  17. 17.
    Rak Z, Kluczowski R et al (2006) Anode supported solid oxide fuel cells. Ceramics 96:459–466 [in Polish]Google Scholar
  18. 18.
    Krauz M, Kluczowski R et al (2006) Solid oxide fuel cells—experience in laboratory scale. In: Catalysis for environment: depollution, renewable energy and clean fuels, Zakopane, 20–23 Sept 2006, pp 123–127Google Scholar
  19. 19.
    Kluczowski R, Krauz M et al (2007) Test bench for solid oxide fuel cells. In: Dresdener Kreis Elektroenergieversongung Goslar, 28 Mar 2007Google Scholar
  20. 20.
    Antunes R, Golec T et al (2010) Geometrical and microstructure optimization of double-layer LSM/LSM-YSZ cathodes by electrochemical impedance spectroscopy. J Fuel Cell Sci Tech 7(011011):1–6Google Scholar
  21. 21.
    Golec T, Miller M et al (2010) The institute of power engineering activity in the solid oxide fuel cells (SOFC) technology. J Fuel Cell Sci Tech 7(011003):1–5Google Scholar
  22. 22.
    Krauz M, Krząstek K et al (2007) The application of thick and thin-film technique for the solid oxide fuel cells manufacturing. In: XXXI international conference of IMAPS Poland chapter, Krasiczyn, 23–26 Sept 2007, pp 503–506Google Scholar
  23. 23.
    Krząstek K, Krauz M et al (2004) Manufacturing of solid oxide fuel cells. Ceramics 84 [in Polish]Google Scholar
  24. 24.
    Tomov R, Krauz M et al (2010) Direct Ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells. J Pow Sour 195:7160–7167CrossRefGoogle Scholar
  25. 25.
    Berent K, Kluczowski R et al (2010) Formation of submicron and nanometric zirconia powders for use in fuel cells. Ceram Mat 62:207–217Google Scholar
  26. 26.
    Kluczowski R, Krauz M et al (2014) Near net shape manufacturing of planar anode supported solid oxide fuel cells by using ceramic injection molding and screen printing. J Pow Sour 268:752–757CrossRefGoogle Scholar
  27. 27.
    Weimar MR, Chick LA et al (2013) Cost study for manufacturing of solid oxide fuel cell power systems, U.S. Department of Energy.
  28. 28.
    Weber E, Tiffee I (2004) Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. J Pow Sour 127:273–283CrossRefGoogle Scholar
  29. 29.
    Antonucci V, Brunaccini G, De Pascale A (2015) Integration of μ-SOFC generator and ZEBRA batteries for domestic application and comparison with other μ-CHP technologies. Ener Proc 75:999–1004CrossRefGoogle Scholar
  30. 30.
    Badyda K, Kupecki J, Milewski J (2010) Modelling of integrated gasification hybrid power systems. Rynek Energii 88(3):74–79Google Scholar
  31. 31.
    Molenda J, Kupecki J et al (2017) Status report on high temperature fuel cells in Poland—recent advances and achievements. Int J Hydr Ener 42(7):4366–4403CrossRefGoogle Scholar
  32. 32.
    Giacoppo G, Barbera O, Briguglio N et al (2017) Thermal study of a SOFC system integration in a fuselage of a hybrid electric mini UAV. Int J Hydr Ener 42(46):28022–28033CrossRefGoogle Scholar
  33. 33.
    Kupecki J, Motylinski K, Ferraro M (2016) Use of NaNiCl battery for mitigation of SOFC stack cycling in base-load telecommunication power system—a preliminary evaluation. J Pow Techn 96(1):63–71Google Scholar
  34. 34.
    Frazzica A, Briguglio N, Sapienza A et al (2015) Analysis of different heat pumping technologies integrating small scale solid oxide fuel cell system for more efficient building heating systems. Int J Hydr Ener 40(42):14746–14756CrossRefGoogle Scholar
  35. 35.
    Antonucci V, Branchini L, Brunaccini G et al (2017) Thermal integration of a SOFC power generator and a Na–NiCl2 battery for CHP domestic application. App Ener 185(2):1256–1267CrossRefGoogle Scholar
  36. 36.
    Tucker MC, Lau GY et al (2007) Performance of metal-supported SOFCs with infiltrated electrodes. J Pow Sour 171:477–482CrossRefGoogle Scholar
  37. 37.
    Tucker MC, Lau GY et al (2008) Stability and robustness of metal-supported SOFCs. J Pow Sour 175:447–451CrossRefGoogle Scholar
  38. 38.
    Tucker MC (2010) Progress in metal-supported solid oxide fuel cells: a review. J Pow Sour 195:4570–4582CrossRefGoogle Scholar
  39. 39.
    Blennowa P, Hjelma J et al (2011) Manufacturing and characterization of metal-supported solid oxide fuel cells. J Pow Sour 196:7117–7125CrossRefGoogle Scholar
  40. 40.
    Kim J, Cho KH et al (2013) Structural studies of porous Ni/YSZ cermets fabricated by the solid-state reaction method. Ceram Int 39:7467–7474CrossRefGoogle Scholar
  41. 41.
    Spacil HS (1970) Fuel cell comprising a stabilized zirconium oxide electrolyte and a doped indium or tin oxide cathode. U.S. Pat No. 3,558,360, 26 Jan 1971Google Scholar
  42. 42.
    Lee JH, Moon H et al (2002) Quantitative analysis of microstructure and its related electrical property of SOFC anode Ni–YSZ cermet. Solid State Ion. 148:15–26CrossRefGoogle Scholar
  43. 43.
    Yang J, Ma W et al (2014) Study on the pore-formers for porous anode substrates of solid oxide fuel cell. Rare Metal Mat and Eng 43(2):269–273CrossRefGoogle Scholar
  44. 44.
    Bahman AH, Selomulya C et al (2012) Electrochemical characteristics and performance of anode-supported SOFCs fabricated using carbon microspheres as a pore-former. Int J of Hydr Ener 37(24):19045–19054CrossRefGoogle Scholar
  45. 45.
    Kim YJ, Hwang SC et al (2016) Thermal cycling of anode supported solid oxide fuel cells under various conditions: electrical anode protection. Int J Hydr Ener 41(48):23173–23182, Scholar
  46. 46.
    Blum L (2017) An analysis of contact problems in solid oxide fuel cell stacks arising from differences in thermal expansion coefficients. Electroch Acta 223:100–108CrossRefGoogle Scholar
  47. 47.
    Koh JH, Yoo YS, Park JW et al (2002) Carbon deposition and cell performance of Ni–YSZ anode support SOFC with methane fuel. Solid State Ion 149(3–4):157–166CrossRefGoogle Scholar
  48. 48.
    Yan M, Zeng M, Chen Q (2012) Numerical study on carbon deposition of SOFC with unsteady state variation of porosity. App Ener 97:754–762CrossRefGoogle Scholar
  49. 49.
    Motylinski K, Naumovich Y (2017) Numerical model for evaluation of the effects of carbon deposition on the performance of 1 kW SOFC stack—a proposal. In: E3S web of conference 14, 01043CrossRefGoogle Scholar
  50. 50.
    Kupecki J, Jewulski J, Badyda K (2011) Selection of a fuel processing method for SOFC-based micro-CHP system. Rynek Energii 97(6):157–162Google Scholar
  51. 51.
    Blesznowski M, Jewulski J, Zieleniak A (2013) Determination of H2S and HCl concentration limits in the fuel for anode supported SOFC operation. Cent Eur J Chem 11(6):960–967Google Scholar
  52. 52.
    Amaya DM, Estrada D et al (2017) Porous Cu/YSZ anodes processed by aqueous tape casting for IT-SOFC. J Eur Cer Soc 37:5233–5237CrossRefGoogle Scholar
  53. 53.
    Ye XF, Wang SR et al (2009) Improvement of Cu–CeO anodes for SOFCs running on ethanol fuels. Solid State Ion 180(2):276–281CrossRefGoogle Scholar
  54. 54.
    Konar R, Mukhopadhyay J et al (2016) Synthesis of Cu–YSZ and Ni–Cu–YSZ cermets by a novel electroless technique for use as solid oxide fuel cell anode: Application potentiality towards fuel flexibility in biogas atmosphere. Int J Hydr Ener 41(2):1151–1160CrossRefGoogle Scholar
  55. 55.
    Jin C, Yang C et al (2011) LaSrCrMnO as hydrogen electrode for solid oxide electrolysis cells. Int J Hydr Ener 36(5):3340–3346CrossRefGoogle Scholar
  56. 56.
    Tao SW, Irvine JTS (2004) Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3, a redox-stable, efficient perovskite anode for SOFCs. J Electrochem Soc 151:A252–A259CrossRefGoogle Scholar
  57. 57.
    Jung I, Lee D et al (2013) LSCM–YSZ nanocomposites for a high performance SOFC anode. Ceram Int 39(8):9753–9758CrossRefGoogle Scholar
  58. 58.
    Ruiz-Morales JC, Canales-Vazquez J (2006) Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439:568–571CrossRefGoogle Scholar
  59. 59.
    Omar S, Belda A et al (2011) Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen. Solid State Ion 184:2–5CrossRefGoogle Scholar
  60. 60.
    Etsel TH, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev 70(3):339–376CrossRefGoogle Scholar
  61. 61.
    Nomuraa K, Mizutania Y et al (2000) Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ion 132:235–239CrossRefGoogle Scholar
  62. 62.
    Badwal SPS, Ciacchi FT et al (2000) Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ion 136–137:91–99CrossRefGoogle Scholar
  63. 63.
    Haeringa C, Roosen A et al (2005) Degradation of the electrical conductivity in stabilised zirconia system Part II: Scandia-stabilised zirconia. Solid State Ion 176:261–268CrossRefGoogle Scholar
  64. 64.
    Kharton VV, Naumovich EN et al (1992) Physico-chemical and electrochemical properties of Ln(Sr)CoO3 electrode materials. Electrochem 28:1693–1702Google Scholar
  65. 65.
    Petric A, Huang P et al (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ion 135:719–725CrossRefGoogle Scholar
  66. 66.
    Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588CrossRefGoogle Scholar
  67. 67.
    Ullmann H, Trofimenko N et al (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion 138:79–90CrossRefGoogle Scholar
  68. 68.
    Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–174CrossRefGoogle Scholar
  69. 69.
    Duan Z, Yang M et al (2006) Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode for IT-SOFCs with a GDC interlayer. J Pow Sour 160:57–64CrossRefGoogle Scholar
  70. 70.
    Liu QL, Khor KA et al (2006) High-performance low temperature solid oxide fuel cell with novel BSCF cathode. J Pow Sour 161:123–128CrossRefGoogle Scholar
  71. 71.
    Yan A, Cheng M et al (2006) Investigation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ based cathode IT-SOFC: I. The effect of CO2 on the cell performance. App Catalysis B Envir 66:64–71CrossRefGoogle Scholar
  72. 72.
    Oczos K (1996) Shaping of ceramic technical materials. Publishing House of PRz, Rzeszów [in Polish]Google Scholar
  73. 73.
    Will J, Mitterdorfer A et al (2000) Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ion 131:79–96CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ryszard Kluczowski
    • 1
  • Michał Kawalec
    • 1
  • Mariusz Krauz
    • 1
  • Adam Świeca
    • 1
  1. 1.Ceramic Department CERELInstitute of Power EngineeringBoguchwalaPoland

Personalised recommendations