Skip to main content

Memory and Learning as Key Competences of Living Organisms

  • Chapter
  • First Online:
Book cover Memory and Learning in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Organisms that share the capability of storing information about experiences in the past have an actively generated background resource on which they can compare and evaluate more recent experiences in order to quickly or even better react than in previous situations. This is an essential competence for all reaction and adaptation purposes of living organisms. Such memory/learning skills can be found from akaryotes up to unicellular eukaryotes, fungi, animals and plants, although until recently, it had been mentioned only as a capability of higher animals. With the rise of epigenetics, the context-dependent marking of experiences at both the phenotype and the genotype level is an essential perspective to understand memory and learning in all organisms. Both memory and learning depend on a variety of successful communication processes within the whole organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aramayo R, Selker EU (2013) Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 5:a017921

    Article  Google Scholar 

  • Atkins JF, Gesteland RF, Cech TR (eds) (2011) RNA worlds. From life’s origin to diversity in gene regulation. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  • Baluška F, Mancuso S (2009) Plant neurobiology: from sensory biology, via plant communication, to social plant behavior. Cogn Process 10:3–7

    Article  Google Scholar 

  • Baluška F, Hlavacka A, Mancuso S, Barlow PW (2006) Neurobiological view of plants and their body plan. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, New York, pp 19–35

    Chapter  Google Scholar 

  • Baluška F, Lev-Yadun S, Mancuso S (2010) Swarm intelligence in plant roots. Trends Ecol Evol 25:682–683

    Article  Google Scholar 

  • Barlow DP (2011) Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 45:379–403

    Article  CAS  Google Scholar 

  • Baulcombe DC, Dean C (2014) Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol 6:a019471

    Article  Google Scholar 

  • Ben Jacob E, Becker I, Shapira Y, Levine H (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12:366–372

    Article  Google Scholar 

  • Biergans SD, Claudianos C, Reinhard J, Galizia CG (2016) DNA methylation adjusts the specificity of memories depending on the learning context and promotes relearning in honeybees. Front Mol Neurosci 9:82

    Article  Google Scholar 

  • Birnbaum KD, Roudier F (2017) Epigenetic memory and cell fate reprogramming in plants. Regeneration 4:15–20

    Article  CAS  Google Scholar 

  • Blaze J, Roth TL (2013) Epigenetic mechanisms in learning and memory. Wiley Interdiscip Rev Cogn Sci 4:105–115

    Article  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification—heritable responses to environmental stress? Curr Opin Plant Biol 14:260–266

    Article  Google Scholar 

  • Casadesús J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856

    Article  Google Scholar 

  • Cichewicz R (2012) Epigenetic regulation of secondary metabolite biosynthetic genes in fungi. In: Witzany G (ed) Biocommunication of fungi. Springer, Dordrecht, pp 57–69

    Chapter  Google Scholar 

  • Davidson AR (2017) Virology: phages make a group decision. Nature 541:466–467

    Article  CAS  Google Scholar 

  • Diaz-Munos SL, Sanjuan R, West S (2017) Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22:437–441

    Article  Google Scholar 

  • Dunlap JC, Loros JJ (2004) The neurospora circadian system. J Biol Rhythm 19:414–424

    Article  CAS  Google Scholar 

  • D’Urso A, Brickner JH (2017) Epigenetic transcriptional memory. Curr Genet 63:435–439

    Article  Google Scholar 

  • Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541:488–493

    Article  CAS  Google Scholar 

  • Gagliano M, Grimonprez M, Depczynski M, Renton M (2017) Tuned in: plant roots use sound to locate water. Oecologia 184:151–160

    Article  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PC (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819:176–185

    Article  CAS  Google Scholar 

  • Gutzat R, Mittelsten Scheid O (2012) Epigenetic responses to stress: triple defense? Curr Opin Plant Biol 15:568–573

    Article  CAS  Google Scholar 

  • Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S (2017) Multilevel regulation of abiotic stress responses in plants. Front Plant Sci 8:1564

    Article  Google Scholar 

  • Hayden EJ, Lehman N (2006) Self-assembly of a group I intron from inactive oligonucleotide fragments. Chem Biol 13:909–918

    Article  CAS  Google Scholar 

  • Smit S, Yarus M, Knight R (2006) Natural selection is not required to explain universal compositional patterns in rRNA secondary structure categories. RNA 12:1–14

    Article  CAS  Google Scholar 

  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756

    Article  CAS  Google Scholar 

  • Kohlenbrander PE, Egland PG, Diaz PI, Palmer RJ (2005) Genome-genome interactions: bacterial communities in intitial dental plaque. Trends Microbiol 13:11–15

    Article  Google Scholar 

  • Kronholm I, Johannesson H, Ketola T (2016) Epigenetic control of phenotypic plasticity in the filamentous fungus Neurospora crassa. G3 (Bethesda) 6:4009–4022

    Google Scholar 

  • Lambowitz AM, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3(8):a003616

    Article  Google Scholar 

  • Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18:124

    Article  Google Scholar 

  • Lolle SJ, Victor JL, Young JM, Pruitt RE (2005) Genome wide non mendelian inheritance of extra genomic information in Arabidopsis. Nature 434:505–509

    Article  CAS  Google Scholar 

  • Losick R, Kaiser D (1997) Why and how bacteria communicate. Sci Am 276:68–73

    Article  CAS  Google Scholar 

  • Margulis L (1996) Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci U S A 93:1071–1076

    Article  CAS  Google Scholar 

  • Mathis R, Ackermann M (2016) Response of single bacterial cells to stress gives rise to complex history dependence at the population level. Proc Natl Acad Sci U S A 113:4224–4229

    Article  CAS  Google Scholar 

  • Matzke MA, Kanno T, Matzke AJ (2015) RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:243–267

    Article  CAS  Google Scholar 

  • Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  Google Scholar 

  • McKeown PC, Spillane C (2014) Landscaping plant epigenetics. Methods Mol Biol 1112:1–24

    Article  CAS  Google Scholar 

  • Menzel R (2012) The honey bee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768

    Article  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Mariani J, Kosik KS, Mehler MF, Mattick JS (2008) Noncoding RNAs in long-term memory formation. Neuroscientist 14:434–445

    Article  CAS  Google Scholar 

  • Mruk I, Kobayashi I (2014) To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42:70–86

    Article  CAS  Google Scholar 

  • Nowacki M, Landweber L (2009) Epigenetic inheritance in ciliates. Curr Opin Microbiol 12:638–643

    Article  CAS  Google Scholar 

  • Oliverio AM, Katz LA (2014) The dynamic nature of genomes across the tree of life. Genome Biol Evol 6:482–488

    Article  Google Scholar 

  • Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79:135–160

    Article  CAS  Google Scholar 

  • Parvizi J, Damasio AR (2003) Neuroanatomical correlates of brainstem coma. Brain 126:1524–1536

    Article  Google Scholar 

  • Pearson H (2005) Cress overturns textbook genetics. Nature 434:351–360

    Article  Google Scholar 

  • Pikaard CS, Mittelsten Scheid O (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a01931

    Article  Google Scholar 

  • Rajewski N, Jurga S, Barciszewski J (eds) (2017) Plant epigenetics. Springer, Cham

    Google Scholar 

  • Rohwer F, Youle M, Maughan H, Hisikawa N (2014) Life in our phage world. Wholon, San Diego

    Google Scholar 

  • Sacktor TC, Hell JW (2017) The genetics of PKMζ and memory maintenance. Sci Signal 10:505

    Article  Google Scholar 

  • Santos AP, Ferreira LJ, Oliveira MM (2017) Concerted flexibility of chromatin structure, methylome, and histone modifications along with plant stress responses. Biology 6:3

    Article  Google Scholar 

  • Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480

    Article  CAS  Google Scholar 

  • Shapiro JA (2007) Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. Stud Hist Phil Biol Biomed Sci 38:807–819

    Article  CAS  Google Scholar 

  • Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Goût JF, Prajer M, Potekhin A, Przybòs E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury JM, Sperling L, Duharcourt S, Meyer E (2014) Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 509:447–452

    Article  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  Google Scholar 

  • Talbert PB, Henikoff S (2014) Environmental responses mediated by histone variants. Trends Cell Biol 24:642–650

    Article  CAS  Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  CAS  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Plant Sci 10:413–419

    Article  CAS  Google Scholar 

  • Urtel GC, Rind T, Braun D (2017) Reversible switching of cooperating replicators. Phys Rev Lett 118:078102

    Article  Google Scholar 

  • Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N (2012) Spontaneous network formation among cooperative RNA replicators. Nature 491:72–77

    Article  CAS  Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM Press, Washington, DC

    Book  Google Scholar 

  • Villarreal LP (2009a) The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 1178:194–232

    Article  CAS  Google Scholar 

  • Villarreal LP (2009b) Origin of group identity. Viruses, addiction and cooperation. Springer, New York

    Google Scholar 

  • Villarreal LP (2011) Viral ancestors of antiviral systems. Viruses 3:1933–1958

    Article  CAS  Google Scholar 

  • Villarreal LP (2012) The addiction module as a social force. In: Witzany G (ed) Viruses: essential agents of life. Springer, Dordrecht, pp 107–145

    Chapter  Google Scholar 

  • Villarreal LP (2015) Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann N Y Acad Sci 1341:25–34

    Article  CAS  Google Scholar 

  • Villarreal LP, Witzany G (2015) When competing viruses unify: evolution, conservation, and plasticity of genetic identities. J Mol Evol 80:305–318

    Article  CAS  Google Scholar 

  • Weigl D, Jürgens G (2005) Hotheaded healer. Nature 434:443

    Article  Google Scholar 

  • Witzany G (1995) From the “logic of the molecular syntax” to molecular pragmatism. Explanatory deficits in Manfred Eigen’s concept of language and communication. Evol Cognit 1:148–168

    Google Scholar 

  • Witzany G (2000) Life: the communicative structure. BoD, Norderstedt

    Google Scholar 

  • Witzany G (2006) Serial endosymbiotic theory (SET): the biosemiotic update. Acta Biotheor 54:103–117

    Article  Google Scholar 

  • Witzany G (2010) Biocommunication and natural genome editing. Springer, Dordrecht

    Book  Google Scholar 

  • Witzany G (ed) (2011) Biocommunication in soil microorganisms. Springer, Heidelberg

    Google Scholar 

  • Witzany G (ed) (2012) Biocommunication of fungi. Springer, Dordrecht

    Google Scholar 

  • Witzany G (ed) (2014) Biocommunication of animals. Springer, Dordrecht

    Google Scholar 

  • Witzany G (ed) (2017) Biocommunication of archaea. Springer, Dordrecht

    Google Scholar 

  • Witzany G, Baluška F (eds) (2012) Biocommunication of plants. Springer, Heidelberg

    Google Scholar 

  • Witzany G, Nowacki M (eds) (2016) Biocommunication of ciliates. Springer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Witzany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Witzany, G. (2018). Memory and Learning as Key Competences of Living Organisms. In: Baluska, F., Gagliano, M., Witzany, G. (eds) Memory and Learning in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75596-0_1

Download citation

Publish with us

Policies and ethics