Skip to main content

An Immersed Boundary Method for Detail-Preserving Soft Tissue Simulation from Medical Images

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Simulating the deformation of the human anatomy is a central element of Medical Image Computing and Computer-Assisted Interventions. Such simulations play a key role in nonrigid registration, augmented reality, and several other applications. Although the Finite Element Method is widely used as a numerical approach in this area, it is often hindered by the need for an optimal meshing of the domain of interest. The derivation of meshes from imaging modalities such as CT or MRI can be cumbersome and time-consuming. In this paper, we use the Immersed Boundary Method (IBM) to bridge the gap between these imaging modalities and the fast simulation of soft tissue deformation on complex shapes represented by a surface mesh directly retrieved from binary images. A high-resolution surface, which can be obtained from binary images using a marching cubes approach, is embedded into a hexahedral simulation grid. The details of the surface mesh are properly taken into account in the hexahedral mesh by adapting the Mirtich integration method. In addition to not requiring a dedicated meshing approach, our method results in higher accuracy for less degrees of freedom when compared to other element types. Examples on brain deformation demonstrate the potential of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benzley SE, Perry E, Merkley K, Clark B, Sjaardama G (1995) A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In: Proceedings, 4th international meshing roundtable, vol 17, pp 179–191

    Google Scholar 

  2. Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) Cutfem: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501

    Google Scholar 

  3. Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5(1):62–73

    Google Scholar 

  4. Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I et al (2012) Sofa: a multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery. Springer, pp 283–321

    Google Scholar 

  5. Geuzaine C, Remacle J-F (2009) GMSH: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11): 1309–1331

    Google Scholar 

  6. Hackbusch W, Sauter SA (1997) Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer Math 75(4):447–472

    Google Scholar 

  7. Ji S, Ford JC, Greenwald RM, Beckwith JG, Paulsen KD, Flashman LA, McAllister TW (2011) Automated subject-specific, hexahedral mesh generation via image registration. Finite Elem Anal Des 47(10):1178–1185

    Google Scholar 

  8. Liseikin VD (2009) Grid generation methods. Springer, Berlin

    Google Scholar 

  9. Massing A, Larson MG, Logg A (2013) Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions. SIAM J Sci Comput 35(1): C23–C47

    Google Scholar 

  10. Miller K (1999) Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J Biomech 32(5):531–537

    Google Scholar 

  11. Mirtich B (1996) Fast and accurate computation of polyhedral mass properties. J Graph Tools 1(2):31–50

    Google Scholar 

  12. Nitsche J (1971) Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, vol 36. Springer, Berlin, pp 9–15

    Google Scholar 

  13. Owen SJ (1998) A survey of unstructured mesh generation technology. In: International Meshing Roundtable, pp 239–267

    Google Scholar 

  14. Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133

    Article  MathSciNet  Google Scholar 

  15. Paulus CJ, Haouchine N, Kong S-H, Soares RV, Cazier D, Cotin S (2016) Handling topological changes during elastic registration: application to augmented reality in laparoscopic surgery. Int J Comput Assist Radiol Surg 12(3):461–470

    Article  Google Scholar 

  16. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  MathSciNet  Google Scholar 

  17. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  Google Scholar 

  18. Peterseim D, Sauter SA (2008) The composite mini element - coarse mesh computation of stokes flows on complicated domains. SIAM J Numer Anal 46(6):3181–3206

    Article  MathSciNet  Google Scholar 

  19. Rech M, Sauter S, Smolianski A (2006) Two-scale composite finite element method for Dirichlet problems on complicated domains. Numer Math 102(4):681–708

    Article  MathSciNet  Google Scholar 

  20. Rüberg T, Cirak F, García Aznar JM (2016) An unstructured immersed finite element method for nonlinear solid mechanics. AMSES 3(1):22

    Google Scholar 

  21. Wriggers P (2008) Nonlinear finite element methods. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgements

Daniel Peterseim was supported by DFG-SPP 1748 under the project Adaptive isogeometric modeling of discontinuities in complex-shaped heterogeneous solids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Cotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paulus, C.J., Maier, R., Peterseim, D., Cotin, S. (2019). An Immersed Boundary Method for Detail-Preserving Soft Tissue Simulation from Medical Images. In: Nielsen, P., Wittek, A., Miller, K., Doyle, B., Joldes, G., Nash, M. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-75589-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75589-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75588-5

  • Online ISBN: 978-3-319-75589-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics