Computational Modeling of Fluid–Structure Interaction Between Blood Flow and Mitral Valve

  • Weixin Si
  • Xiangyun Liao
  • Jing Qin
  • Pheng Ann Heng
Conference paper


Mitral valve repair is a complex operation, in which the functionality of incompetent mitral valve is reconstructed by surgical techniques. Simulation-based surgical planning system, allowing surgeons to simulate and compare potential repair strategies, could greatly improve surgical outcomes. This paper presents a practical computational framework, combining the Total Lagrangian Explicit Dynamics Finite Element Method (TLED FEM) and Smoothed Particle Hydrodynamics (SPH), to solve the interaction problem of blood and immersed mitral valves. With this completed pipeline, we can not only predict the mechanical behavior of mitral valve, but also analyze the transvalvular pressures distributed on valve leaflets. The experimental results demonstrate that our method has the potential to be applied in surgical planning simulator of mitral valve repair.


Mitral valve repair Mechanical behavior modeling Fluid–structure interaction Smoothed particle hydrodynamics Total Lagrangian explicit dynamics finite element method 



The work is supported by grants from Gongdong Natural Science Foundation Project (No. 2016A030313047), Shenzhen Science and Technology Program (No.JCYJ20160429190300857), the Science and Technology Plan Project of Guangzhou (No.201704020141), and National Natural Science Foundation of China (No. 81601576).


  1. 1.
    Iung B, Vahanian A (2011) Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol 8(3):162–172CrossRefGoogle Scholar
  2. 2.
    Vahanian A, Baumgartner H, Bax J, Butchart E, Dion R, Filippatos G, Flachskampf F, Hall R, Iung B, Kasprzak J et al (2007) Guidelines on the management of valvular heart disease. Eur Heart J 28(2):230–268Google Scholar
  3. 3.
    Gammie JS, OBrien SM, Griffith BP, Ferguson TB, Peterson ED (2007) Influence of hospital procedural volume on care process and mortality for patients undergoing elective surgery for mitral regurgitation. Circulation 115(7):881–887CrossRefGoogle Scholar
  4. 4.
    Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, Ionasec RI, Noack T, Seeburger J, Comaniciu D (2012) An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to mitralclip intervention planning. Med Image Anal 16(7):1330–1346CrossRefGoogle Scholar
  5. 5.
    Kunzelman K, Einstein DR, Cochran R (2007) Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos Trans R Soc Lond B Biol Sci 362(1484):1393–1406CrossRefGoogle Scholar
  6. 6.
    Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, Sotiropoulos F (2013) Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 46(2):217–228CrossRefGoogle Scholar
  7. 7.
    Stevanella M, Maffessanti F, Conti CA, Votta E, Arnoldi A, Lombardi M, Parodi O, Caiani EG, Redaelli A (2011) Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc Eng Technol 2(2):66–76CrossRefGoogle Scholar
  8. 8.
    Xu C, Jassar AS, Nathan DP, Eperjesi TJ, Brinster CJ, Levack MM, Vergnat M, Gorman RC, Gorman JH, Jackson BM (2012) Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation. Ann Thorac Surg 93(4):1141–1145CrossRefGoogle Scholar
  9. 9.
    Hammer PE, Pedro J, Howe RD (2011) Anisotropic mass-spring method accurately simulates mitral valve closure from image-based models. In: Functional imaging and modeling of the heart. Springer, Berlin, pp 233–240CrossRefGoogle Scholar
  10. 10.
    Hammer PE, Sacks MS, Pedro J, Howe RD (2011) Mass spring model for simulation of heart valve tissue mechanical behavior. Ann Biomed Eng 39(6):1668–1679CrossRefGoogle Scholar
  11. 11.
    Hammer PE, Chen PC, Pedro J, Howe RD (2012) Computational model of aortic valve surgical repair using grafted pericardium. J Biomech 45(7):1199–1204CrossRefGoogle Scholar
  12. 12.
    Griffith BE (2012) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Method Biomed Eng 28(3):317–345MathSciNetCrossRefGoogle Scholar
  13. 13.
    Le TB, Sotiropoulos F (2013) Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62MathSciNetCrossRefGoogle Scholar
  14. 14.
    Einstein DR, Pin FD, Jiao X et al (2010) Fluid-structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int J Numer Methods Eng 26(3-4):348–380MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lau KD, Diaz V, Scambler P et al (2010) Mitral valve dynamics in structural and fluid–structure interaction models. Med Eng Phys 32(9):1057–1064CrossRefGoogle Scholar
  16. 16.
    Mittal R, Seo JH, Vedula V et al (2016) Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput Phys 305:1065–1082MathSciNetCrossRefGoogle Scholar
  17. 17.
    Otani T, Alissa A, Pourmorteza A et al (2016) A computational framework for personalized blood flow analysis in the human left atrium. Ann Biomed Eng 44:3284–3294CrossRefGoogle Scholar
  18. 18.
    Miller K, Joldes G, Lance D, Wittek A (2007) Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun Numer Methods Eng 23(2):121–134MathSciNetCrossRefGoogle Scholar
  19. 19.
    Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nesme M, Kry PG, Jerabkova L et al (2009) Preserving topology and elasticity for embedded deformable models. ACM Trans Graph 28(3):52CrossRefGoogle Scholar
  21. 21.
    Poston T, Wong TT, Heng PA (1998) Multiresolution isosurface extraction with adaptive skeleton climbing. Comput Graphics Forum 17(3):137–147. CrossRefGoogle Scholar
  22. 22.
    Tao J, Schaefer S, Warren J (2005) Mean value coordinates for closed triangular meshes. ACM Trans Graph 24:561–566CrossRefGoogle Scholar
  23. 23.
    Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517MathSciNetCrossRefGoogle Scholar
  24. 24.
    Su B, San Tan R, Le Tan J et al (2016) Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J Biomech 49(7):1199–1205CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Weixin Si
    • 1
  • Xiangyun Liao
    • 2
  • Jing Qin
    • 1
  • Pheng Ann Heng
    • 2
    • 3
  1. 1.School of NursingThe Hong Kong Polytechnic UniversityHong KongChina
  2. 2.Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  3. 3.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong KongChina

Personalised recommendations