Patient-Specific Simulation: Non-Destructive Identification Method for Soft Tissue Under Large Strain: Application to Pelvic System

  • Olivier MayeurEmail author
  • Jean-François Witz
  • Pauline Lecomte-Grosbras
  • Michel Cosson
  • Mathias Brieu
Conference paper


This work presents a non-destructive method to assess mechanical properties of the patient-specific soft tissues of a multi-organ system under large strain. The presented application is focusing on the female pelvic cavity. Based on an experimental data bank of mechanical properties, dynamic MRI’s displacement field analysis, MRI’s geometrical reconstruction, and FE model of the pelvic cavity, a protocol has been developed to identify the material properties of a specific patient’s organs. The purpose of this paper is to tackle that issue by using an inverse finite element analysis. Mechanical properties of the soft tissues are optimized to obtain the MRI’s observed displacement of the cervix on the FE model.


Biomechanics Non-destructive methods Patient-specific simulation Material behavior Pelvic system FE model 


  1. 1.
    Macfarlane AJ, Blondel B, Mohangoo AD, Cuttini M, Nijhuis J, Novak Z, Olafsdottir HS, Zeitlin J, Euro-Peristat Scientific Committee (2016) Wide differences in mode of delivery within Europe: risk-stratified analyses of aggregated routine data from the Euro-Peristat study. BJOG 123:559–568CrossRefGoogle Scholar
  2. 2.
    Mayeur O, Jeanditgautier E, Witz JF, Lecomte-Grosbras P, Cosson M, Rubod C, Brieu M (2017) Evaluation of strains on levator ani muscle: damage induced during delivery for a prediction of patient risks. In: Computational biomechanics for medicine. Springer, Cham, pp 135–146CrossRefGoogle Scholar
  3. 3.
    Rortveit G, Brown JS, Thom DH, Van Den Eeden SK, Creasman JM, Subak LL (2007) Symptomatic pelvic organ prolapse: prevalence and risk factors in a population-based, racially diverse cohort. Obstet Gynecol 109(6):1396–1403CrossRefGoogle Scholar
  4. 4.
    Dubuis L, Avril S, Debayle J, Badel P (2011) Identification of the material parameters of soft tissues in the compressed leg. Comput Methods Biomech Biomed Eng 15(1):3–11CrossRefGoogle Scholar
  5. 5.
    Mayeur O, Witz JF, Lecomte-Grosbras P, Brieu M, Cosson M, Miller K (2016) Influence of geometry and mechanical properties on the accuracy of patient-specific simulation of women pelvic floor. Ann Biomed Eng 44(1):202–212CrossRefGoogle Scholar
  6. 6.
    Namías R, D’Amato JP, Del Fresno M, Vénere M, Pirró N, Bellemare ME (2016) Multi-object segmentation framework using deformable models for medical imaging analysis. Med Biol Eng Comput 54(8):1181–1192CrossRefGoogle Scholar
  7. 7.
    Jiang Z, Witz JF, Lecomte-Grosbras P, Dequidt J, Duriez C, Cosson M, Cotin S, Brieu M (2015) B-spline based multi-organ detection in magnetic resonance imaging. Strain 51:235–247CrossRefGoogle Scholar
  8. 8.
    Lecomte-Grosbras P, Witz JF, Brieu M, Faye N, Cosson M, Rubid C (2015) Quantification of pelvic mobility on dynamic magnetic resonance images: using mechanical insight to help diagnose pelvic pathologies. Strain 51(4):301–310CrossRefGoogle Scholar
  9. 9.
    Kamina P (2008) Anatomie clinique, vol 4. Maloine, ParisGoogle Scholar
  10. 10.
    Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton H, Heniford BT (2005) Normal intra-abdominal pressure in healthy adults. J Surg Res 129:231–235, 20CrossRefGoogle Scholar
  11. 11.
    Chantereau P, Brieu M, Kammal M, Farthmann J, Gabriel B, Cosson M (2014) Mechanical properties of pelvic soft tissue of young women and impact of aging. Int Urogynecol J 25(11):1547–1553CrossRefGoogle Scholar
  12. 12.
    Rubod C, Boukerrou M, Brieu M, Jean-Charles C, Dubois P, Cosson M (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct 121(9):811–816CrossRefGoogle Scholar
  13. 13.
    Rubod C, Brieu M, Cosson M, Rivaux G, Clay JC, Gabriel B (2012) Biomechanical properties of human pelvic organs. J Urol 79(4):1346–1354Google Scholar
  14. 14.
    Clay JC, Rubod C, Brieu M, Boukerrou M, Fasel J, Cosson M (2010) Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. Int Urogynecol J 21(12):1535–1538CrossRefGoogle Scholar
  15. 15.
    Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Olivier Mayeur
    • 1
    • 2
    Email author
  • Jean-François Witz
    • 1
    • 2
  • Pauline Lecomte-Grosbras
    • 1
    • 2
  • Michel Cosson
    • 2
    • 3
    • 4
  • Mathias Brieu
    • 1
    • 2
  1. 1.Centrale LilleVilleneuve-d’AscqFrance
  2. 2.Laboratoire de Mécanique de LilleVilleneuve-d’AscqFrance
  3. 3.CHU Lille, Service de Chirurgie GynécologiqueLilleFrance
  4. 4.Faculté de MédecineUniversité Lille Nord de FranceLilleFrance

Personalised recommendations