Advertisement

Towards a Real-Time Full-Field Stereoscopic Imaging System for Tracking Lung Surface Deformation Under Pressure Controlled Ventilation

  • Samuel Richardson
  • Thiranja P. Babarenda GamageEmail author
  • Amir HajiRassouliha
  • Toby Jackson
  • Kerry Hedges
  • Alys Clark
  • Andrew Taberner
  • Merryn H. Tawhai
  • Poul M. F. Nielsen
Conference paper
  • 376 Downloads

Abstract

The normal decline in lung function that occurs with age is virtually indistinguishable from early disease, leading to frequent misdiagnosis in the elderly. Computational modelling promises to be a useful tool for improving our understanding of lung mechanics. However, there is currently no unified structure-function computational model that explains how age-dependent structural changes translate to decline in whole lung function. Furthermore, existing models suffer from weak parameterisation due to lack of available data. To begin addressing this issue, we have developed a real-time full-field stereoscopic imaging system for tracking surface deformation of the rat lung during pressure-controlled ventilation. The system will enable the acquisition of novel physiological data on lung tissue mechanics. This study presents preliminary lung surface tracking results from experiments on Sprague-Dawley rats under pressure controlled ventilation. This rich data will provide us with previously unavailable information for constructing and validating more realistic computational models of the lung to help us better understand the mechanisms behind decline in lung function with aging and help guide the development of new diagnostic methods to distinguish age from lung disease.

Keywords

Computer vision Stereoscopic-imaging Lung inflation Surface displacement tracking Image registration Sprague-Dawley rat 

Notes

Acknowledgments

The authors are grateful for financial support from the Royal Society of New Zealand Marsden Fund and the Auckland Bioengineering Institute. The authors thank Stephen Olding for machining the stereo imaging rig.

References

  1. 1.
    Weibel ER, Nieman GF, Gatto LA, Frazer DG, Schittny JC, Woods JC, Conradi MS, Yablonskiy DA (2012) Commentaries on viewpoint: unresolved mysteries. J Appl Physiol 113(12):1948–1949CrossRefGoogle Scholar
  2. 2.
    Smaldone GC, Mitzner W (2012) Viewpoint: unresolved mysteries. J Appl Physiol 113(12):1945–1947CrossRefGoogle Scholar
  3. 3.
    Gil J, Bachofen H, Gehr P, Weibel ER (1979) Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J Appl Physiol 47(5):990–1001CrossRefGoogle Scholar
  4. 4.
    Dunnill MS (1967) Effect of lung inflation on alveolar surface area in the dog. Nature 214(5092):1013–1014CrossRefGoogle Scholar
  5. 5.
    Namati E, Warger WC, Unglert C, Eckert J, Hostens J, Bouma B, Tearney G (2013) Four-dimensional visualization of subpleural alveolar dynamics in vivo during uninterrupted mechanical ventilation of living swine. Biomed Opt Express 4(11):2492–2506CrossRefGoogle Scholar
  6. 6.
    Oldmixon EH, Hoppin FG Jr (1991) Alveolar septal folding and lung inflation history. J Appl Physiol 71(6):2369–2379CrossRefGoogle Scholar
  7. 7.
    Tschumperlin DJ, Margulies SS (1999) Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol 86(6):2026–2033CrossRefGoogle Scholar
  8. 8.
    Forrest JB (1970) The effect of changes in lung volume on the size and shape of alveoli. J Physiol 210(3):533–547CrossRefGoogle Scholar
  9. 9.
    Carney DE, Bredenberg CE, Schiller HJ, Picone AL, McCann UG, Gatto LA, Bailey G, Fillinger M, Nieman GF (1999) The mechanism of lung volume change during mechanical ventilation. Am J Respir Crit Care Med 160(5):1697–1702CrossRefGoogle Scholar
  10. 10.
    Amin SD, Suki B (2012) Could dynamic ventilation waveforms bring about a paradigm shift in mechanical ventilation? J Appl Physiol 112(3):333–334CrossRefGoogle Scholar
  11. 11.
    Kononov S, Brewer K, Sakai H, Cavalcante FSA, Sabayanagam CR, Ingenito EP, Suki B (2001) Roles of mechanical forces and collagen failure in the development of elastase-induced emphysema. Am J Respir Crit Care Med 164:1920–1926CrossRefGoogle Scholar
  12. 12.
    Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67(6):2408–2419CrossRefGoogle Scholar
  13. 13.
    Freed AD, Einstein DR (2012) Hypo-elastic model for lung parenchyma. Biomech Model Mechanobiol 11(3-4):557–573CrossRefGoogle Scholar
  14. 14.
    Tawhai MH, Nash MP, Lin CL, Hoffman EA (2009) Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 107(3):912–920CrossRefGoogle Scholar
  15. 15.
    Denny E, Schroter RC (2006) A model of non-uniform lung parenchyma distortion. J Biomech 39(4):652–663CrossRefGoogle Scholar
  16. 16.
    Bel-Brunon A, Kehl S, Martin C, Uhlig S, Wall WA (2014) Numerical identification method for the non-linear viscoelastic compressible behavior of soft tissue using uniaxial tensile tests and image registration - application to rat lung parenchyma. J Mech Behav Biomed Mater 29:360–374CrossRefGoogle Scholar
  17. 17.
    Debes JC, Fung YC (1992) Effect of temperature on the biaxial mechanics of excised lung parenchyma of the dog. J Appl Physiol 73(3):1171–1180CrossRefGoogle Scholar
  18. 18.
    Vawter DL, Fung YC, West JB (1978) Elasticity of excised dog lung parenchyma. J Appl Physiol 45(2):261–269CrossRefGoogle Scholar
  19. 19.
    Rausch SMK, Martin C, Bornemann PB, Uhlig S, Wall WA (2011) Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater 4(4):583–592CrossRefGoogle Scholar
  20. 20.
    Lehr JL, Butler JP, Westerman PA, Zatz SL, Drazen JM (1985) Photographic measurement of pleural surface motion during lung oscillation. J Appl Physiol 59(2):623–633CrossRefGoogle Scholar
  21. 21.
    Broderick SP, Doyle BJ, Kavanagh EG, Walsh MT (2013) Photogrammetry for use in biological surface acquisition: investigation of use, geometric accuracy and consequence on analysis. Comput Methods Biomech Biomed Eng 1(4):234–246Google Scholar
  22. 22.
    Lum H, Mitzner W (1987) A species comparison of alveolar size and surface forces. J Appl Physiol 62(5):1865–1871CrossRefGoogle Scholar
  23. 23.
    Kerr JS, Yu SY, Riley DJ (1990) Strain specific respiratory air space enlargement in aged rats. Exp Gerontol 25(6):563–574CrossRefGoogle Scholar
  24. 24.
    Malcolm DTK, Nielsen PMF, Hunter PJ, Charette PG (2002) Strain measurement in biaxially loaded inhomogeneous, anisotropic elastic membranes. Biomech Model Mechanobiol 1(3):197–210.  https://doi.org/10.1007/s10237-002-0018-8 CrossRefGoogle Scholar
  25. 25.
    Frazer DG, Weber KC (1976) Trapped air in ventilated excised rat lungs. J Appl Physiol 40(6):915–922CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Samuel Richardson
    • 1
  • Thiranja P. Babarenda Gamage
    • 1
    Email author
  • Amir HajiRassouliha
    • 1
  • Toby Jackson
    • 1
  • Kerry Hedges
    • 1
  • Alys Clark
    • 1
  • Andrew Taberner
    • 1
    • 2
  • Merryn H. Tawhai
    • 1
  • Poul M. F. Nielsen
    • 1
    • 2
  1. 1.Auckland Bioengineering Institute, University of AucklandAucklandNew Zealand
  2. 2.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations