A Comparison of Biomechanical Models for MRI to Digital Breast Tomosynthesis 3D Registration

  • P. Cotič SmoleEmail author
  • C. Kaiser
  • J. Krammer
  • N. V. Ruiter
  • T. Hopp
Conference paper


Increasing interest in multimodal breast cancer diagnosis has led to the development of methods for MRI to X-ray mammography registration. The severe breast deformation in X-ray mammography is often tackled by biomechanical models, yet there is no common consensus in literature about the required complexity of the deformation model and the simulation strategy. We present for the first time an automated patient-specific biomechanical model based image registration of MRI to digital breast tomosynthesis (DBT). DBT provides three-dimensional information of the compressed breast and as such drives the registration by a volume similarity metric. We compare different simulation strategies and propose a patient-specific optimization of simulation and model parameters. The average three-dimensional breast overlap measured by Dice coefficient of DBT and registered MRI improves for four analyzed subjects by including the estimation of unloaded state, simulation of gravity, and a concentrated pull force that mimics manual positioning of the breast on the plates from 88.1% for a mere compression simulation to 93.1% when including all our proposed simulation steps, whereas additional parameter optimization further increased the value to 94.4%.


Breast image registration Biomechanical model Magnetic resonance imaging Digital breast tomosynthesis 


  1. 1.
    Altobelli E, Lattanzi L (2014) Breast cancer in European Union: an update of screening programmes as of March 2014 (Review). Int J Oncol 45:1785–1792CrossRefGoogle Scholar
  2. 2.
    Tempany CMC, Jayender J, Kapur T, Bueno R, Golby A, Agar N, Jolesz FA (2015) Multimodal imaging for improved diagnosis and treatment of cancers. Cancer 121:817–827CrossRefGoogle Scholar
  3. 3.
    Mertzanidou T, Hipwell J, Cardoso MJ, Zhang X, Tanner C, Ourselin S, Bick U, Huisman H, Karssemeijer N, Hawkes D (2012) MRI to X-ray mammography registration using a volume-preserving affine transformation. Med Image Anal 16(5):966–975CrossRefGoogle Scholar
  4. 4.
    Krüger J, Ehrhardt J, Bischof A, Handels H (2014) Simulation of mammographic breast compression in 3D MR images using ICP-based B-spline deformation for multimodality breast cancer diagnosis. Int J Comput Assist Radiol Surg 9(3):367–377CrossRefGoogle Scholar
  5. 5.
    Ruiter NV, Stotzka R, Müller TO, Gemmeke H, Reichenbach JR, Kaiser WA (2006) Model-based registration of X-ray mammograms and MR images of the female breast. IEEE Trans Nucl Sci 53(1):204–211CrossRefGoogle Scholar
  6. 6.
    Mertzanidou T, Hipwell J, Johnsen S, Han L, Eiben B, Taylor Z, Ourselin S, Huisman H, Mann R, Bick U, Karsse-meijer N, Hawkes D (2014) MRI to X-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters. Med Image Anal 18(4):674–683CrossRefGoogle Scholar
  7. 7.
    Lee AWC, Rajagopal V, Bararenda Gamage TP, Doyle AJ, Nielsen PMF, Nash MP (2013) Breast lesion co-localisation between X-ray and MR images using finite element modeling. Med Image Anal 17(8):1256–1264CrossRefGoogle Scholar
  8. 8.
    Hopp T, Dietzel M, Baltzer PA, Kreisel P, Kaiser WA, Gemmeke H, Ruiter NV (2013) Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization. Med Image Anal 17(2):209–218CrossRefGoogle Scholar
  9. 9.
    Mertzanidou T, Hipwell J, Han L, Huisman H, Karssemaijer N, Hawkes D (2011) MRI to X-ray mammography registration using an ellipsoidal breast model and biomechanically simulated compressions. In: Proceedings of the workshop on breast image analysis, MICCAI 2011, pp 161–168Google Scholar
  10. 10.
    Niklason LT, Christian BT, Niklason LE et al (1997) Digital tomosynthesis in breast imaging. Radiology 205:399–406CrossRefGoogle Scholar
  11. 11.
    Hopp T, Ruiter NV, Dietzel M, Baltzer P, Kaiser W (2010) Bildfusion von Röntgen–Mammogrammen mit Magnetresonanztomographie–Volumen. In: Proceedings of Deutscher Röntgenkongress 2010Google Scholar
  12. 12.
    Wu S, Weinstein S, Keller BM, Conant EF, Kontos D (2012) Fully-automated fibroglandular tissue segmentation in breast MRI. In: Proceedings of IWDM 2012, LNCS 7361, pp 244–251CrossRefGoogle Scholar
  13. 13.
    Bliznakova K, Bliznakova Z, Bravou V, Kolitsi Z, Pallikarakis N (2003) A three-dimensional breast software phantom for mammography simulation. Phys Med Biol 48:3699–3719CrossRefGoogle Scholar
  14. 14.
    Fang Q, Boas D (2009) Tetrahedral mesh generation from volumetric binary and gray-scale images In: Proceedings of IEEE international symposium on biomedical imaging 2009, pp 1142–1145Google Scholar
  15. 15.
    Rivlin RS (1948) Large elastic deformations of isotropic materials. Fundamental concepts. Philos Trans R Soc Lond Ser A Math Phys Sci 240(822):459–490Google Scholar
  16. 16.
    Dassault Systemes: ABAQUS/CAE 6.13 User’s Manual, Online DocumentationGoogle Scholar
  17. 17.
    Eiben B, Vavourakis V, Hipwell J, Kabus S, Lorenz C, Buelow T, Hawkes D (2014) Breast deformation modelling: comparison of methods to obtain a patient specific unloaded configuration. In: Proceedings of SPIE medical imaging, 9036, 903615Google Scholar
  18. 18.
    Amidror I (2002) Scattered data interpolation methods for electronic imaging systems: a survey. J Electron Imaging 11(2):157–176CrossRefGoogle Scholar
  19. 19.
    Hopp T, Dapp R, Zapf M, Kretzek E, Gemmeke H, Ruiter NV (2015) Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences. In: Proceedings of SPIE 9419, medical imaging 2015: ultrasonic imaging and tomography, 94190QGoogle Scholar
  20. 20.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks IV. IEEE, Piscataway, pp 1942–1948Google Scholar
  21. 21.
    Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRefGoogle Scholar
  22. 22.
    Duda VF, Schulz-Wendtland R (2004) Mammadiagnostik. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Hopp T, de Barros Rupp Simioni W, Exposito Perez JA, Ruiter NV (2015) Comparison of biomechanical models for MRI to X-ray mammography registration. In: Proceedings 3rd MICCAI workshop on breast image analysis, München, Oct 9, 2015Google Scholar
  24. 24.
    Samani A, Zubovits J, Plewes D (2007) Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 52(6):1565CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • P. Cotič Smole
    • 1
    • 2
    Email author
  • C. Kaiser
    • 2
    • 3
  • J. Krammer
    • 2
    • 3
  • N. V. Ruiter
    • 1
  • T. Hopp
    • 1
    • 2
  1. 1.Karlsruhe Institute of TechnologyInstitute for Data Processing and ElectronicsKarlsruheGermany
  2. 2.HEiKA – Heidelberg Karlsruhe Research PartnershipHeidelberg University, Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.University Medical Centre Mannheim, Medical Faculty MannheimUniversity of Heidelberg, Institute of Clinical Radiology and Nuclear MedicineMannheimGermany

Personalised recommendations