Simulation Training Experience in Neurosurgical Training in Europe

  • Nabeel Saud Alshafai
  • Wafa Alduais
  • Maksim Son
Part of the Comprehensive Healthcare Simulation book series (CHS)


The objective of this chapter is to encapsulate the past, current, and future contribution to neurosurgical training in simulation from a European prospective. This chapter does not touch advances related to outside the European continent .


Simulation training Neurosurgical training European perspective 


  1. 1.
    Ziv A, Wolpe PR, Small SD, Glick S. Simulation-based medical education: an ethical imperative. Acad Med. 2003;78(8):783–8.CrossRefGoogle Scholar
  2. 2.
    Jena AB, Seabury S, Lakdawalla D, Chandra A. Malpractice risk according to physician specialty. N Engl J Med. 2011;365(7):629–36.CrossRefGoogle Scholar
  3. 3.
    Stone S, Bernstein M. Prospective error recording in surgery: an analysis of 1108 elective neurosurgical cases. Neurosurgery. 2007;60(6):1075–82.CrossRefGoogle Scholar
  4. 4.
    Cobb MI, Taekman JM, Zomorodi AR, Gonzalez LF, Turner DA. Simulation in neurosurgery—a brief review and commentary. World Neurosurg. 2016;89:583–6.CrossRefGoogle Scholar
  5. 5.
    Marcus H, Vakharia V, Kirkman MA, Murphy M, Nandi D. Practice makes perfect? The role of simulation-based deliberate practice and script-based mental rehearsal in the acquisition and maintenance of operative neurosurgical skills. Neurosurgery. 2013;72:A124–30.CrossRefGoogle Scholar
  6. 6.
    Spritz N. Oversight of physicians’ conduct by state licensing agencies: lessons from New York’s Libby Zion case. Ann Intern Med. 1991;115(3):219–22.CrossRefGoogle Scholar
  7. 7.
    McManus IC, Richards P, Winder BC, Sproston KA, Vincent CA. The changing clinical experience of British medical students. Lancet. 1993;341(8850):941–4.CrossRefGoogle Scholar
  8. 8.
    Brennum J, van Loon J. Neurosurgical education in Europe. Acta Neurochir. 2016;158:1–2.CrossRefGoogle Scholar
  9. 9.
    Smith A, Siassakos D, Crofts J, Draycott T. Simulation: improving patient outcomes. In Seminars in perinatology 2013;37(3):151–156. WB Saunders.Google Scholar
  10. 10.
    Nishisaki A, Keren R, Nadkarni V. Does simulation improve patient safety?: self-efficacy, competence, operational performance, and patient safety. Anesthesiol Clin. 2007;25(2):225–36.CrossRefGoogle Scholar
  11. 11.
    Green M, Tariq R, Green P. Improving patient safety through simulation training in anesthesiology: where are we? Anesthesiol Res Pract. 2016;1:2016.Google Scholar
  12. 12.
    Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, Kuhlen D, Schaller K. Neurosurgical resident education in Europe—results of a multinational survey. Acta Neurochir. 2016;158(1):3–15.CrossRefGoogle Scholar
  13. 13.
    Gladwell M. Outliers: the story of success. New York: Hachette; 2008.Google Scholar
  14. 14.
    Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training: a systematic review. J Neurosurg. 2014;121(2):228–46.CrossRefGoogle Scholar
  15. 15.
    Trojanowski T. Certification of competence in neurosurgery – the European perspective. World Neurosurg. 2010;74(4–5):432–3.CrossRefGoogle Scholar
  16. 16.
    Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, et al. Working time of neurosurgical residents in Europe – results of a multinational survey. Acta Neurochir. 2016;158(1):17–25.CrossRefGoogle Scholar
  17. 17.
    Alshafai N, Falenchuk O, Cusimano MD. International differences in the management of intracranial aneurysms: implications for the education of the next generation of neurosurgeons. Acta Neurochir. 2015;157(9):1467–75.CrossRefGoogle Scholar
  18. 18.
    Zanello M, Zerah M, Sainte-Rose C, Di Rocco F. Virtual simulation in neurosurgery: a comparison between pediatric and general neurosurgeons. Acta Neurochir. 2014;156(11):2215–6.CrossRefGoogle Scholar
  19. 19.
    Byvaltsev VA, Belykh EG, Konovalov NA. New simulation technologies in neurosurgery. Zh Vopr Neirokhir Im N N Burdenko. 2016;80(2):102–7.CrossRefGoogle Scholar
  20. 20.
    Arora S, Darzi A. Introducing technical skills assessment into certification: closing the implementation gap. Ann Surg. 2016;264(1):7–9.CrossRefGoogle Scholar
  21. 21.
    Alvand A, Auplish S, Gill H, Rees J. Innate arthroscopic skills in medical students and variation in learning curves. J Bone Joint Surg Am. 2011;93(19):e115.CrossRefGoogle Scholar
  22. 22.
    Grantcharov TP, Funch-Jensen P. Can everyone achieve proficiency with the laparoscopic technique? Learning curve patterns in technical skills acquisition. Am J Surg. 2009;197(4):447–9.CrossRefGoogle Scholar
  23. 23.
    Sadideen H, Alvand A, Saadeddin M, Kneebone R. Surgical experts: born or made? Int J Surg. 2013;11(9):773–8.CrossRefGoogle Scholar
  24. 24.
    Halpenny J. The training of the surgeon. Can Med Assoc J. 1918;8(10):896.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363.CrossRefGoogle Scholar
  26. 26.
    Spiteri A, Aggarwal R, Kersey T, Benjamin L, Darzi A, Bloom P. Phacoemulsification skills training and assessment. Br J Ophthalmol. 2010;94(5):536–41.CrossRefGoogle Scholar
  27. 27.
    Okuda Y, Bryson EO, DeMaria S, Jacobson L, Quinones J, Shen B, Levine AI. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med (A Journal of Translational and Personalized Medicine). 2009;76(4):330–43.CrossRefGoogle Scholar
  28. 28.
    Weller JM. Simulation in undergraduate medical education: bridging the gap between theory and practice. Med Educ. 2004;38(1):32–8.CrossRefGoogle Scholar
  29. 29.
    Limbrick DD Jr, Dacey RG Jr. Simulation in neurosurgery: possibilities and practicalities: foreword. Neurosurgery. 2013;73:S1–3.CrossRefGoogle Scholar
  30. 30.
    Cohen AR, Lohani S, Manjila S, Natsupakpong S, Brown N, Cavusoglu MC. Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training. Childs Nerv Syst. 2013;29(8):1235–44.CrossRefGoogle Scholar
  31. 31.
    Gélinas-Phaneuf N, Choudhury N, Al-Habib AR, Cabral A, Nadeau E, Mora V, Pazos V, Debergue P, DiRaddo R, Del Maestro RF. Assessing performance in brain tumor resection using a novel virtual reality simulator. Int J Comput Assist Radiol Surg. 2014;9(1):1–9.CrossRefGoogle Scholar
  32. 32.
    Harrop J, Rezai AR, Hoh DJ, Ghobrial GM, Sharan A. Neurosurgical training with a novel cervical spine simulator: posterior foraminotomy and laminectomy. Neurosurgery. 2013;73:S94–9.CrossRefGoogle Scholar
  33. 33.
    Hassfeld S, Zöller J, Albert FK, Wirtz CR, Knauth M, Mühling J. Preoperative planning and intraoperative navigation in skull base surgery. J Cranio-Maxillofac Surg. 1998;26(4):220–5.CrossRefGoogle Scholar
  34. 34.
    Wolfsberger S, Forster MT, Donat M, Neubauer A, Bühler K, Wegenkittl R, Czech T, Hainfellner JA, Knosp E. Virtual endoscopy is a useful device for training and preoperative planning of transsphenoidal endoscopic pituitary surgery. Minim Invasive Neurosurg. 2004;47(4):214–20.CrossRefGoogle Scholar
  35. 35.
    Beyer J, Hadwiger M, Wolfsberger S, Bühler K. High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. IEEE Trans Vis Comput Graph. 2007;13(6):1696–703.CrossRefGoogle Scholar
  36. 36.
    Bouyssie JF, Bouyssie S, Sharrock P, Duran D. Stereolithographic models derived from X-ray computed tomography reproduction accuracy. Surg Radiol Anat. 1997;19(3):193–9.PubMedGoogle Scholar
  37. 37.
    Sailer HF, Haers PE, Zollikofer CP, Warnke T, Caris FR, Stucki P. The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int J Oral Maxillofac Surg. 1998;27(5):327–33.CrossRefGoogle Scholar
  38. 38.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.CrossRefGoogle Scholar
  39. 39.
    Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.CrossRefGoogle Scholar
  40. 40.
    By Minecraftpsyco – Own work, CC BY-SA 4.0,
  41. 41.
    Bradley P. The history of simulation in medical education and possible future directions. Med Educ. 2006;40(3):254–62.CrossRefGoogle Scholar
  42. 42.
    Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S. Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol. 2012;126(07):663–9.CrossRefGoogle Scholar
  43. 43.
    Kockro RA, Stadie A, Schwandt E, Reisch R, Charalampaki C, Ng I, Yeo TT, Hwang P, Serra L, Perneczky A. A collaborative virtual reality environment for neurosurgical planning and training. Operative Neurosurgery. 2007;61(5):379–91.CrossRefGoogle Scholar
  44. 44.
    Amunts K, Ebell C, Muller J, Telefont M, Knoll A, Lippert T. The human brain project: creating a European Research Infrastructure to decode the human brain. Neuron. 2016;92(3):574–81.CrossRefGoogle Scholar
  45. 45.
    Huerta MF, Koslow SH, Leshner AI. The human brain project: an international resource. Trends Neurosci. 1993;16(11):436–8.CrossRefGoogle Scholar
  46. 46.
    Blue Brain and the Human Brain Project.
  47. 47.
    Human Brain Project from Wikipedia.
  48. 48.
    Markram H. The blue brain project. Nat Rev Neurosci. 2006;7(2):153–60.CrossRefGoogle Scholar
  49. 49.
    Blue Brain/Project Director.
  50. 50.
    Human Brain Project overview.
  51. 51.
    D’Angelo E. The human brain project. Funct Neurol. 2012;27(4):205.PubMedGoogle Scholar
  52. 52.
  53. 53.
    Human Brain Project Subproject overview.
  54. 54.
    Krichmar JL, Edelman GM. Design principles and constraints underlying the construction of brain-based devices. In International Conference on Neural Information Processing. 2007. Springer Berlin Heidelberg, p. 157–66.Google Scholar
  55. 55.
    Ross T. Machines that think. Health. 1933;243:248.Google Scholar
  56. 56.
  57. 57.
    Metta G, Sandini G, Vernon D, Natale L, Nori F. The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th workshop on performance metrics for intelligent systems; 2008, ACM, p. 50–6.Google Scholar
  58. 58.
    Mizuuchi I, Nakanishi Y, Sodeyama Y, Namiki Y, Nishino T, Muramatsu N, Urata J, Hongo K, Yoshikai T, Inaba M. An advanced musculoskeletal humanoid kojiro. In: Humanoid robots, 2007 7th IEEE-RAS international conference on 2007. IEEE, p. 294–9.Google Scholar
  59. 59.
    Marques HG, Jäntsch M, Wittmeier S, Holland O, Alessandro C, Diamond A, Lungarella M, Knight R. ECCE1: the first of a series of anthropomimetic musculoskeletal upper torsos. In: Humanoid robots (humanoids), 2010 10th IEEE-RAS International Conference on 2010 Dec 6; IEEE, p. 391–6.Google Scholar
  60. 60.
  61. 61.
    Olabe J, Olabe J, Sancho V. Human cadaver brain infusion model for neurosurgical training. Surg Neurol. 2009;72(6):700–2.CrossRefGoogle Scholar
  62. 62.
    Suslu HT, Tatarli N, Karaaslan A, Demirel N. A practical laboratory study simulating the lumbar microdiscectomy: training model in fresh cadaveric sheep spine. J Neurol Surg A Cent Eur Neurosurg. 2014;75(3):167–9.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Tomlinson JE, Yiasemidou M, Watts AL, Roberts DJ, Timothy J. Cadaveric spinal surgery simulation: a comparison of cadaver types. Global. Spine J. 2016;6(4):357–61.Google Scholar
  64. 64.
    Coelho G, Zanon N, Warf B. The role of simulation in neurosurgery. Childs Nerv Syst. 2014;30(12):1997–2000.CrossRefGoogle Scholar
  65. 65.
    Alshafai N. European educational survey: results form 38 countries. European Association of Neurosurgical Societies Congress; 2016.Google Scholar
  66. 66.
    NeuroSimulation – Besta Neurosim Center [Internet]. Besta Neurosim Center. 2017 [cited 26 January 2017]. Available from:
  67. 67.
    McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. Revisiting ‘a critical review of simulation-based medical education research: 2003–2009’. Med Educ. 2016;50(10):986–91.CrossRefGoogle Scholar
  68. 68.
    Alshafai N. Cranio Cervical Junction Workshop [Internet]. 2017 [cited 26 January 2017]. Available from:
  69. 69.
    Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, et al. Residency program trainee-satisfaction correlate with results of the European board examination in neurosurgery. Acta Neurochir. 2016;158(10):1823–30.CrossRefGoogle Scholar
  70. 70.
  71. 71.
    Society in Europe for Simulation Applied to Medicine SESAM.
  72. 72.
    Alshafai N. Comprehensive Clinical Neurosurgery Review [Internet]. 2017 [cited 26 January 2017]. Available from:
  73. 73.
    Addressing areas of knowledge gap & oral exam skills deficiencies in Neurosurgical Residents. Al Duais W, Son A, Ulasavets U, Abdulkadir M. The Alshafai lab research day. Krakow, December 3rd; 2016.Google Scholar
  74. 74.
    Walsh K. The future of simulation in medical education. J Biomed Res. 2015;29(3):259.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Kneebone R, Arora S, King D, Bello F, Sevdalis N, Kassab E, Aggarwal R, Darzi A, Nestel D. Distributed simulation–accessible immersive training. Med Teach. 2010;32(1):65–70.CrossRefGoogle Scholar
  76. 76.
    Walsh K, Dillner L. Launching BMJ learning: online learning resources based on the best available evidence. BMJ. 2003;327(7423):1064.CrossRefGoogle Scholar
  77. 77.
    Milburn JA, Khera G, Hornby ST, Malone PS, Fitzgerald JE. Introduction, availability and role of simulation in surgical education and training: review of current evidence and recommendations from the Association of Surgeons in training. Int J Surg. 2012;10(8):393–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nabeel Saud Alshafai
    • 1
  • Wafa Alduais
    • 1
  • Maksim Son
    • 1
  1. 1.Alshafai Neurosurgical Academy A.N.ATorontoCanada

Personalised recommendations