Skip to main content

Simulation Training Experience in Neurosurgical Training in Europe

  • Chapter
  • First Online:
  • 765 Accesses

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

The objective of this chapter is to encapsulate the past, current, and future contribution to neurosurgical training in simulation from a European prospective. This chapter does not touch advances related to outside the European continent .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ziv A, Wolpe PR, Small SD, Glick S. Simulation-based medical education: an ethical imperative. Acad Med. 2003;78(8):783–8.

    Article  PubMed  Google Scholar 

  2. Jena AB, Seabury S, Lakdawalla D, Chandra A. Malpractice risk according to physician specialty. N Engl J Med. 2011;365(7):629–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stone S, Bernstein M. Prospective error recording in surgery: an analysis of 1108 elective neurosurgical cases. Neurosurgery. 2007;60(6):1075–82.

    Article  PubMed  Google Scholar 

  4. Cobb MI, Taekman JM, Zomorodi AR, Gonzalez LF, Turner DA. Simulation in neurosurgery—a brief review and commentary. World Neurosurg. 2016;89:583–6.

    Article  PubMed  Google Scholar 

  5. Marcus H, Vakharia V, Kirkman MA, Murphy M, Nandi D. Practice makes perfect? The role of simulation-based deliberate practice and script-based mental rehearsal in the acquisition and maintenance of operative neurosurgical skills. Neurosurgery. 2013;72:A124–30.

    Article  Google Scholar 

  6. Spritz N. Oversight of physicians’ conduct by state licensing agencies: lessons from New York’s Libby Zion case. Ann Intern Med. 1991;115(3):219–22.

    Article  CAS  PubMed  Google Scholar 

  7. McManus IC, Richards P, Winder BC, Sproston KA, Vincent CA. The changing clinical experience of British medical students. Lancet. 1993;341(8850):941–4.

    Article  CAS  PubMed  Google Scholar 

  8. Brennum J, van Loon J. Neurosurgical education in Europe. Acta Neurochir. 2016;158:1–2.

    Article  PubMed  Google Scholar 

  9. Smith A, Siassakos D, Crofts J, Draycott T. Simulation: improving patient outcomes. In Seminars in perinatology 2013;37(3):151–156. WB Saunders.

    Google Scholar 

  10. Nishisaki A, Keren R, Nadkarni V. Does simulation improve patient safety?: self-efficacy, competence, operational performance, and patient safety. Anesthesiol Clin. 2007;25(2):225–36.

    Article  PubMed  Google Scholar 

  11. Green M, Tariq R, Green P. Improving patient safety through simulation training in anesthesiology: where are we? Anesthesiol Res Pract. 2016;1:2016.

    Google Scholar 

  12. Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, Kuhlen D, Schaller K. Neurosurgical resident education in Europe—results of a multinational survey. Acta Neurochir. 2016;158(1):3–15.

    Article  PubMed  Google Scholar 

  13. Gladwell M. Outliers: the story of success. New York: Hachette; 2008.

    Google Scholar 

  14. Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training: a systematic review. J Neurosurg. 2014;121(2):228–46.

    Article  PubMed  Google Scholar 

  15. Trojanowski T. Certification of competence in neurosurgery – the European perspective. World Neurosurg. 2010;74(4–5):432–3.

    Article  PubMed  Google Scholar 

  16. Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, et al. Working time of neurosurgical residents in Europe – results of a multinational survey. Acta Neurochir. 2016;158(1):17–25.

    Article  PubMed  Google Scholar 

  17. Alshafai N, Falenchuk O, Cusimano MD. International differences in the management of intracranial aneurysms: implications for the education of the next generation of neurosurgeons. Acta Neurochir. 2015;157(9):1467–75.

    Article  PubMed  Google Scholar 

  18. Zanello M, Zerah M, Sainte-Rose C, Di Rocco F. Virtual simulation in neurosurgery: a comparison between pediatric and general neurosurgeons. Acta Neurochir. 2014;156(11):2215–6.

    Article  PubMed  Google Scholar 

  19. Byvaltsev VA, Belykh EG, Konovalov NA. New simulation technologies in neurosurgery. Zh Vopr Neirokhir Im N N Burdenko. 2016;80(2):102–7.

    Article  CAS  PubMed  Google Scholar 

  20. Arora S, Darzi A. Introducing technical skills assessment into certification: closing the implementation gap. Ann Surg. 2016;264(1):7–9.

    Article  PubMed  Google Scholar 

  21. Alvand A, Auplish S, Gill H, Rees J. Innate arthroscopic skills in medical students and variation in learning curves. J Bone Joint Surg Am. 2011;93(19):e115.

    Article  PubMed  Google Scholar 

  22. Grantcharov TP, Funch-Jensen P. Can everyone achieve proficiency with the laparoscopic technique? Learning curve patterns in technical skills acquisition. Am J Surg. 2009;197(4):447–9.

    Article  PubMed  Google Scholar 

  23. Sadideen H, Alvand A, Saadeddin M, Kneebone R. Surgical experts: born or made? Int J Surg. 2013;11(9):773–8.

    Article  PubMed  Google Scholar 

  24. Halpenny J. The training of the surgeon. Can Med Assoc J. 1918;8(10):896.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363.

    Article  Google Scholar 

  26. Spiteri A, Aggarwal R, Kersey T, Benjamin L, Darzi A, Bloom P. Phacoemulsification skills training and assessment. Br J Ophthalmol. 2010;94(5):536–41.

    Article  PubMed  Google Scholar 

  27. Okuda Y, Bryson EO, DeMaria S, Jacobson L, Quinones J, Shen B, Levine AI. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med (A Journal of Translational and Personalized Medicine). 2009;76(4):330–43.

    Article  Google Scholar 

  28. Weller JM. Simulation in undergraduate medical education: bridging the gap between theory and practice. Med Educ. 2004;38(1):32–8.

    Article  PubMed  Google Scholar 

  29. Limbrick DD Jr, Dacey RG Jr. Simulation in neurosurgery: possibilities and practicalities: foreword. Neurosurgery. 2013;73:S1–3.

    Article  Google Scholar 

  30. Cohen AR, Lohani S, Manjila S, Natsupakpong S, Brown N, Cavusoglu MC. Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training. Childs Nerv Syst. 2013;29(8):1235–44.

    Article  PubMed  Google Scholar 

  31. Gélinas-Phaneuf N, Choudhury N, Al-Habib AR, Cabral A, Nadeau E, Mora V, Pazos V, Debergue P, DiRaddo R, Del Maestro RF. Assessing performance in brain tumor resection using a novel virtual reality simulator. Int J Comput Assist Radiol Surg. 2014;9(1):1–9.

    Article  PubMed  Google Scholar 

  32. Harrop J, Rezai AR, Hoh DJ, Ghobrial GM, Sharan A. Neurosurgical training with a novel cervical spine simulator: posterior foraminotomy and laminectomy. Neurosurgery. 2013;73:S94–9.

    Article  Google Scholar 

  33. Hassfeld S, Zöller J, Albert FK, Wirtz CR, Knauth M, Mühling J. Preoperative planning and intraoperative navigation in skull base surgery. J Cranio-Maxillofac Surg. 1998;26(4):220–5.

    Article  CAS  Google Scholar 

  34. Wolfsberger S, Forster MT, Donat M, Neubauer A, Bühler K, Wegenkittl R, Czech T, Hainfellner JA, Knosp E. Virtual endoscopy is a useful device for training and preoperative planning of transsphenoidal endoscopic pituitary surgery. Minim Invasive Neurosurg. 2004;47(4):214–20.

    Article  CAS  PubMed  Google Scholar 

  35. Beyer J, Hadwiger M, Wolfsberger S, Bühler K. High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. IEEE Trans Vis Comput Graph. 2007;13(6):1696–703.

    Article  PubMed  Google Scholar 

  36. Bouyssie JF, Bouyssie S, Sharrock P, Duran D. Stereolithographic models derived from X-ray computed tomography reproduction accuracy. Surg Radiol Anat. 1997;19(3):193–9.

    CAS  PubMed  Google Scholar 

  37. Sailer HF, Haers PE, Zollikofer CP, Warnke T, Caris FR, Stucki P. The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int J Oral Maxillofac Surg. 1998;27(5):327–33.

    Article  CAS  PubMed  Google Scholar 

  38. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  39. Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.

    Article  PubMed  Google Scholar 

  40. By Minecraftpsyco – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47304870.

  41. Bradley P. The history of simulation in medical education and possible future directions. Med Educ. 2006;40(3):254–62.

    Article  PubMed  Google Scholar 

  42. Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S. Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol. 2012;126(07):663–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kockro RA, Stadie A, Schwandt E, Reisch R, Charalampaki C, Ng I, Yeo TT, Hwang P, Serra L, Perneczky A. A collaborative virtual reality environment for neurosurgical planning and training. Operative Neurosurgery. 2007;61(5):379–91.

    Article  Google Scholar 

  44. Amunts K, Ebell C, Muller J, Telefont M, Knoll A, Lippert T. The human brain project: creating a European Research Infrastructure to decode the human brain. Neuron. 2016;92(3):574–81.

    Article  CAS  PubMed  Google Scholar 

  45. Huerta MF, Koslow SH, Leshner AI. The human brain project: an international resource. Trends Neurosci. 1993;16(11):436–8.

    Article  CAS  PubMed  Google Scholar 

  46. Blue Brain and the Human Brain Project. http://bluebrain.epfl.ch/page-52741-en.html.

  47. Human Brain Project from Wikipedia. https://en.wikipedia.org/wiki/Human_Brain_Project.

  48. Markram H. The blue brain project. Nat Rev Neurosci. 2006;7(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  49. Blue Brain/Project Director. http://bluebrain.epfl.ch/projectdirector.

  50. Human Brain Project overview. https://www.humanbrainproject.eu/2016-overview.

  51. D’Angelo E. The human brain project. Funct Neurol. 2012;27(4):205.

    PubMed  Google Scholar 

  52. Human Brain Project, Framework Partnership Agreement. https://www.humanbrainproject.eu/documents/10180/538356/FPA++Annex+1+Part+B/41c4da2e-0e69-4295-8e98-3484677d661f.

  53. Human Brain Project Subproject overview. https://www.humanbrainproject.eu/subprojects-overview.

  54. Krichmar JL, Edelman GM. Design principles and constraints underlying the construction of brain-based devices. In International Conference on Neural Information Processing. 2007. Springer Berlin Heidelberg, p. 157–66.

    Google Scholar 

  55. Ross T. Machines that think. Health. 1933;243:248.

    Google Scholar 

  56. Wikipedia iCub. https://en.wikipedia.org/wiki/ICub.

  57. Metta G, Sandini G, Vernon D, Natale L, Nori F. The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th workshop on performance metrics for intelligent systems; 2008, ACM, p. 50–6.

    Google Scholar 

  58. Mizuuchi I, Nakanishi Y, Sodeyama Y, Namiki Y, Nishino T, Muramatsu N, Urata J, Hongo K, Yoshikai T, Inaba M. An advanced musculoskeletal humanoid kojiro. In: Humanoid robots, 2007 7th IEEE-RAS international conference on 2007. IEEE, p. 294–9.

    Google Scholar 

  59. Marques HG, Jäntsch M, Wittmeier S, Holland O, Alessandro C, Diamond A, Lungarella M, Knight R. ECCE1: the first of a series of anthropomimetic musculoskeletal upper torsos. In: Humanoid robots (humanoids), 2010 10th IEEE-RAS International Conference on 2010 Dec 6; IEEE, p. 391–6.

    Google Scholar 

  60. Health in Europe. Com http://www.healthcare-in-europe.com/en/article/16755-their-parts-are-simply-too-big.html.

  61. Olabe J, Olabe J, Sancho V. Human cadaver brain infusion model for neurosurgical training. Surg Neurol. 2009;72(6):700–2.

    Article  PubMed  Google Scholar 

  62. Suslu HT, Tatarli N, Karaaslan A, Demirel N. A practical laboratory study simulating the lumbar microdiscectomy: training model in fresh cadaveric sheep spine. J Neurol Surg A Cent Eur Neurosurg. 2014;75(3):167–9.

    PubMed  Google Scholar 

  63. Tomlinson JE, Yiasemidou M, Watts AL, Roberts DJ, Timothy J. Cadaveric spinal surgery simulation: a comparison of cadaver types. Global. Spine J. 2016;6(4):357–61.

    Google Scholar 

  64. Coelho G, Zanon N, Warf B. The role of simulation in neurosurgery. Childs Nerv Syst. 2014;30(12):1997–2000.

    Article  PubMed  Google Scholar 

  65. Alshafai N. European educational survey: results form 38 countries. European Association of Neurosurgical Societies Congress; 2016.

    Google Scholar 

  66. NeuroSimulation – Besta Neurosim Center [Internet]. Besta Neurosim Center. 2017 [cited 26 January 2017]. Available from: http://www.bestaneurosim.com/.

  67. McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. Revisiting ‘a critical review of simulation-based medical education research: 2003–2009’. Med Educ. 2016;50(10):986–91.

    Article  PubMed  Google Scholar 

  68. Alshafai N. Cranio Cervical Junction Workshop [Internet]. Craniocervicaljunction.com. 2017 [cited 26 January 2017]. Available from: http://craniocervicaljunction.com/.

  69. Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, et al. Residency program trainee-satisfaction correlate with results of the European board examination in neurosurgery. Acta Neurochir. 2016;158(10):1823–30.

    Article  PubMed  Google Scholar 

  70. https://www.sesam-web.org/centres/.

  71. Society in Europe for Simulation Applied to Medicine SESAM. https://www.sesam-web.org/centres/.

  72. Alshafai N. Comprehensive Clinical Neurosurgery Review [Internet]. ccnreview.com. 2017 [cited 26 January 2017]. Available from: http://www.ccnreview.com/.

  73. Addressing areas of knowledge gap & oral exam skills deficiencies in Neurosurgical Residents. Al Duais W, Son A, Ulasavets U, Abdulkadir M. The Alshafai lab research day. Krakow, December 3rd; 2016.

    Google Scholar 

  74. Walsh K. The future of simulation in medical education. J Biomed Res. 2015;29(3):259.

    PubMed  PubMed Central  Google Scholar 

  75. Kneebone R, Arora S, King D, Bello F, Sevdalis N, Kassab E, Aggarwal R, Darzi A, Nestel D. Distributed simulation–accessible immersive training. Med Teach. 2010;32(1):65–70.

    Article  PubMed  Google Scholar 

  76. Walsh K, Dillner L. Launching BMJ learning: online learning resources based on the best available evidence. BMJ. 2003;327(7423):1064.

    Article  PubMed Central  Google Scholar 

  77. Milburn JA, Khera G, Hornby ST, Malone PS, Fitzgerald JE. Introduction, availability and role of simulation in surgical education and training: review of current evidence and recommendations from the Association of Surgeons in training. Int J Surg. 2012;10(8):393–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alshafai, N.S., Alduais, W., Son, M. (2018). Simulation Training Experience in Neurosurgical Training in Europe. In: Alaraj, A. (eds) Comprehensive Healthcare Simulation: Neurosurgery. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-75583-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75583-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75582-3

  • Online ISBN: 978-3-319-75583-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics