Ventriculostomy Simulation in Neurosurgery

  • Shivani Rangwala
  • Gregory Arnone
  • Fady T. Charbel
  • Ali AlarajEmail author
Part of the Comprehensive Healthcare Simulation book series (CHS)


Neurosurgery is a highly specialized field which demands years of technical training in a high-stakes environment. Educational centers which train young neurosurgeons must adapt to the ever-changing policies of duty hour restrictions and increased supervision. As a result, simulation in neurosurgery is gaining popularity because it maximizes resident training opportunities while minimizing patient risk. One of the first procedures a young neurosurgical resident will learn is how to place an external ventricular drain (EVD). The learning curve for a ventriculostomy procedure is steep, with junior residents learning from senior residents at first, but advancing to performing the procedure on their own. Ventriculostomy simulation provides a safe and educational environment for neurosurgical residents to refine their skills. In this chapter, we discuss the evolution of simulation in neurosurgery and the various ventriculostomy simulators available for resident training.


Neurosurgical simulation Ventriculostomy Virtual reality simulation Mixed simulation Physical simulation Neurosurgical training 3D printing External ventricular drainage 

Supplementary material

Video 2.1

Video demonstrating the steps of insertion of the frontal ventriculostomy using the Immersive Touch ventriculostomy module (Courtesy of ImmersiveTouch, with permission) (MP4 277928 kb)


  1. 1.
    Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage. J Neurosurg. 2014;120(1):228–36.CrossRefGoogle Scholar
  2. 2.
    Weisenberg SH, TerMaath SC, Seaver CE, Killeffer JA. Ventricular catheter development: past, present, and future. J Neurosurg. 2016;125(6):1504–12.CrossRefGoogle Scholar
  3. 3.
    Keen WW. Surgery of the lateral ventricles of the brain. Lancet. 136(3498):553–5.CrossRefGoogle Scholar
  4. 4.
    Schültke E. Theodor Kocher’s craniometer. Neurosurgery. 2009;64(5):1001–4; discussion 4–5.CrossRefGoogle Scholar
  5. 5.
    Kaufmann GE, Clark K. Emergency frontal twist drill ventriculostomy. Technical note. J Neurosurg. 1970;33(2):226–7.CrossRefGoogle Scholar
  6. 6.
    Dandy WE. An operative procedure for hydrocephalus. Bull Johns Hopkins Hosp. 1922;33:189–90.Google Scholar
  7. 7.
    Sekula RF, Cohen DB, Patek PM, Jannetta PJ, Oh MY. Epidemiology of ventriculostomy in the United States from 1997 to 2001. Br J Neurosurg. 2008;22(2):213–8.CrossRefGoogle Scholar
  8. 8.
    Kakarla UK, Kim LJ, Chang SW, Theodore N, Spetzler RF. Safety and accuracy of bedside external ventricular drain placement. Neurosurgery. 2008;63(1 Suppl 1):ONS162–6; discussion ONS6–7.CrossRefGoogle Scholar
  9. 9.
    Lemole GM, Banerjee PP, Luciano C, Neckrysh S, Charbel FT. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery. 2007;61(1):142–8; discussion 8–9.CrossRefGoogle Scholar
  10. 10.
    Ryan JR, Chen T, Nakaji P, Frakes DH, Gonzalez LF. Ventriculostomy simulation using patient-specific ventricular anatomy, 3D printing, and hydrogel casting. World Neurosurg. 2015;84(5):1333–9.CrossRefGoogle Scholar
  11. 11.
    Grantcharov TP. Is virtual reality simulation an effective training method in surgery? Nat Clin Pract Gastroenterol Hepatol. 2008;5(5):232–3.CrossRefGoogle Scholar
  12. 12.
    Kahol K, Vankipuram M, Smith ML. Cognitive simulators for medical education and training. J Biomed Inform. 2009;42(4):593–604.CrossRefGoogle Scholar
  13. 13.
    Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P. Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg. 2004;91(2):146–50.CrossRefGoogle Scholar
  14. 14.
    Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236(4):458–63; discussion 63–4.CrossRefGoogle Scholar
  15. 15.
    Suri A, Patra DP, Meena RK. Simulation in neurosurgery: past, present, and future. Neurol India. 2016;64(3):387–95.CrossRefGoogle Scholar
  16. 16.
    Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training. A systematic review. J Neurosurg. 2014;121(2):228–46.CrossRefGoogle Scholar
  17. 17.
    Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, et al. The insertion and Management of External Ventricular Drains: an evidence-based consensus statement : a statement for healthcare professionals from the Neurocritical Care Society. Neurocrit Care. 2016;24(1):61–81.CrossRefGoogle Scholar
  18. 18.
    Huyette DR, Turnbow BJ, Kaufman C, Vaslow DF, Whiting BB, Oh MY. Accuracy of the freehand pass technique for ventriculostomy catheter placement: retrospective assessment using computed tomography scans. J Neurosurg. 2008;108(1):88–91.CrossRefGoogle Scholar
  19. 19.
    Alaraj A, Charbel FT, Birk D, Tobin M, Luciano C, Banerjee PP, et al. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery. 2013;72(Suppl 1):115–23.CrossRefGoogle Scholar
  20. 20.
    Yudkowsky R, Luciano C, Banerjee P, Schwartz A, Alaraj A, Lemole GM, et al. Practice on an augmented reality/haptic simulator and library of virtual brains improves residents’ ability to perform a ventriculostomy. Simul Healthc. 2013;8(1):25–31.CrossRefGoogle Scholar
  21. 21.
    Chan S, Conti F, Salisbury K, Blevins NH. Virtual reality simulation in neurosurgery: technologies and evolution. Neurosurgery. 2013;72(Suppl 1):154–64.CrossRefGoogle Scholar
  22. 22.
    Tai BL, Rooney D, Stephenson F, Liao PS, Sagher O, Shih AJ, et al. Development of a 3D-printed external ventricular drain placement simulator: technical note. J Neurosurg. 2015;123(4):1070–6.CrossRefGoogle Scholar
  23. 23.
    Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, et al. Mixed-reality simulation for neurosurgical procedures. Neurosurgery. 2013;73(Suppl 1):138–45.CrossRefGoogle Scholar
  24. 24.
    Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, et al. Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery. 2014;10(Suppl 4):576–81; discussion 81.CrossRefGoogle Scholar
  25. 25.
    Lampotang S, Lizdas D, Rajon D, Luria I, Gravenstein N, Bisht Y, et al. Mixed simulators: augmented physical simulators with virtual underlays. IEEE Virtual Reality. Orlando. 2013.Google Scholar
  26. 26.
    Cobb MI-PH, Taekman JM, Zomorodi AR, Gonzalez LF, Turner DA. Simulation in neurosurgery: a brief review and commentary. World Neurosurg. 2016; 89:583–6.CrossRefGoogle Scholar
  27. 27.
    Delorme S, Laroche D, DiRaddo R, Del Maestro RF. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery. 2012;71(1 Suppl Operative):32–42.PubMedGoogle Scholar
  28. 28.
    Escobar-Castillejos D, Noguez J, Neri L, Magana A, Benes B. A review of simulators with haptic devices for medical training. J Med Syst. 2016;40(4):104.CrossRefGoogle Scholar
  29. 29.
    Alaraj A, Lemole MG, Finkle JH, Yudkowsky R, Wallace A, Luciano C, et al. Virtual reality training in neurosurgery: review of current status and future applications. Surg Neurol Int. 2011;2:52.CrossRefGoogle Scholar
  30. 30.
    Schirmer CM, Elder JB, Roitberg B, Lobel DA. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach. Neurosurgery. 2013;73(Suppl 1):66–73.CrossRefGoogle Scholar
  31. 31.
    Banerjee PP, Luciano CJ, Lemole GM, Charbel FT, Oh MY. Accuracy of ventriculostomy catheter placement using a head- and hand-tracked high-resolution virtual reality simulator with haptic feedback. J Neurosurg. 2007;107(3):515–21.CrossRefGoogle Scholar
  32. 32.
    Lemole M, Banerjee PP, Luciano C, Charbel F, Oh M. Virtual ventriculostomy with ‘shifted ventricle’: neurosurgery resident surgical skill assessment using a high-fidelity haptic/graphic virtual reality simulator. Neurol Res. 2009;31(4):430–1.CrossRefGoogle Scholar
  33. 33.
    Chen RK, Shih AJ. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties. Phys Med Biol. 2013;58(16):5511–25.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shivani Rangwala
    • 1
  • Gregory Arnone
    • 1
  • Fady T. Charbel
    • 1
  • Ali Alaraj
    • 1
    Email author
  1. 1.Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations