Skip to main content

NeuroVR™ Simulator in Neurosurgical Training

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Neurosurgery

Abstract

In an era where neurosurgical training must counterbalance work-hours restrictions and patient safety with highly sophisticated technical mastery, virtual reality (VR) simulation offers a viable educational alternative to the Halstedian apprenticeship model in a risk-free environment. Furthermore, residency training is moving toward the use of proficiency performance benchmarks to acquire a minimum competency standard.

VR surgical simulation allows an objective assessment of practitioner psychomotor skills. Multiple VR simulators have been implemented in neurosurgical training, incorporating varying degrees of sensory cues, immersion, and interactivity. Among the neurosurgical VR simulators that provide visual and haptic feedback, NeuroVR™ allows bimanual manipulation of cranial models and practice of standardized tasks in a stereoscopic view, providing specific metrics and quantitative measurements. Simulating the surgical procedure and measuring the performance through standardized scores, NeuroVR™ may constitute a valid and powerful tool for acquisition, improvement, and assessment of neurosurgical competencies. Several studies have already proved the reliability and validity of its training modules; future full-scale studies are needed to explore the impact on actual operating room performance, the longitudinal efficacy, and the opportunity to customize training programs in order to maximize individual psychomotor skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choudhury N, Gèlinas-Phaneuf N, Delorme S, et al. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills. World Neurosurg. 2013;80(5):9–19.

    Article  Google Scholar 

  2. Clark DB, D’Arcy RCN, Delorme S, et al. Virtual reality simulator: demonstrated use in neurosurgical oncology. Surg Innov. 2012;20(2):190–7.

    Article  Google Scholar 

  3. Delorme S, Laroche D, DiRaddo R, et al. NeouroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery (1 Suppl Operative). 2012;71:32–42.

    Article  Google Scholar 

  4. Rosseau G, Bailes J, Cabral A, et al. The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transphenoidal surgery. Neurosurgery. 2013;73(Suppl 1):85–93.

    Article  Google Scholar 

  5. Azarnoush H, Alzhrani G, Wnkler-Schwartz A, et al. Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection. Int J CARS. 2015;10:603–18.

    Article  Google Scholar 

  6. Alotaibi FE, Alzhrani GA, Mullah MAS, et al. Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator. Neurosurgery (Suppl 2). 2015;11(1):89–98.

    Google Scholar 

  7. Alzhrani G, Alotaibi F, Azarnoush H, et al. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch. J Surg Educ. 2015;72(4):685–96.

    Article  Google Scholar 

  8. Azarnoush H, Siar S, Sawaya R, et al. The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection. J Neurosurg. 2017;127:171–81.

    Article  Google Scholar 

  9. Bugdadi A, Sawaya S, Olwi D, et al. Automaticity of force application during simulated brain tumor resection: testing the Fitts and Posner model. J Surg Educ. 2017 Jul 3. pii: S1931–7204(17)30114–9. doi: https://doi.org/10.1016/j.jsurg.2017.06.018. [Epub ahead of print].

    Article  Google Scholar 

  10. Gelinas-Phaneuf N, Choudry N, Al-Habib AR, et al. Assessing performance in brain tumor resection using a novel virtual reality simulator. Int J CARS. 2014;9:1–9.

    Article  Google Scholar 

  11. Holloway T, Lorsch ZS, Chary MA, et al. Operator experience determines performance in a simulated computer-based brain tumor resection task. Int J CARS. 2015;10:1853–62.

    Article  Google Scholar 

  12. Thawani JP, Ramayya AG, Abdullah KG, et al. Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology. J Clin Neurosci. 2016;34:112–6.

    Article  Google Scholar 

  13. Winkler-Schwartz A, Bajunaid K, Mullah MAS, et al. Bimanual psychomotor performance in neurosurgical resident applicants assessed using NeuroTouch, a virtual reality simulator. J Surg Educ. 2016;73(6):942–53.

    Article  Google Scholar 

  14. NeuroVR™ user guide, 7/8/2016, CAE Healthcare, 905K540052 v1.

    Google Scholar 

  15. Alotaibi FE, Alzhrani GA, Sabbagh AJ, et al. Neurosurgical assessment of metrics including judgment and dexterity using virtual reality simulator NeuroTouch (NAJD metrics). Surg Innov. 2015;22(6):636–42.

    Article  Google Scholar 

  16. Bajunaid K, Mullah MAS, Winkler-Schwartz A, et al. Impact of acute stress on psychomotor bimanual performance during a simulated tumor resection task. J Neurosurg. 2017;126:71–80.

    Article  Google Scholar 

  17. Micko A, Knopp K, Knosp E, et al. Microsurgical performance after sleep interruption: a NeuroTouch simulator study. World Neurosurg. 2017;106:92–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brunozzi, D., McGuire, L.S., Alaraj, A. (2018). NeuroVR™ Simulator in Neurosurgical Training. In: Alaraj, A. (eds) Comprehensive Healthcare Simulation: Neurosurgery. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-75583-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75583-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75582-3

  • Online ISBN: 978-3-319-75583-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics