Competency Assessment in Virtual Reality-Based Simulation in Neurosurgical Training

  • Laura Stone McGuire
  • Ali AlarajEmail author
Part of the Comprehensive Healthcare Simulation book series (CHS)


As the development of virtual reality (VR) and simulation technologies have progressed, so has their incorporation into graduate medical education, especially within surgical specialties. The attention on duty-hour restrictions, the emphasis on patient safety, as well as the advancement of complex surgical techniques, all contribute to the increasing use and utility of virtual reality simulation in neurosurgical training. Additionally, residency programs have sought quantitative measures of competency to achieve the ACGME milestones, and simulation software generally provides detailed proficiency and performance reports for the user, which could be implemented as an evaluative tool throughout training. This brief chapter will overview developments in virtual reality simulation within neurosurgery and their competency-directed use in graduate medical education. Other chapters within this textbook will review specific technologies in more detail.


Virtual reality Virtual reality simulation Neurosurgery Patient safety 


  1. 1.
    Carter FJ, Schijven MP, Aggarwal R, Grantcharov T, Francis NK, Hanna GB, Jakimowicz JJ. Consensus guidelines for validation of virtual reality surgical simulators. Simul Healthc. 2006;1(3):171–9.CrossRefGoogle Scholar
  2. 2.
    Lim S, Parsa AT, Kim BD, Rosenow JM, Kim JY. Impact of resident involvement in neurosurgery: an analysis of 8748 patients from the 2011 American College of Surgeons National Surgical Quality Improvement Program database. J Neurosurg. 2015;122(4):962–70.CrossRefGoogle Scholar
  3. 3.
    Kim DH, Dacey RG, Zipfel GJ, Berger MS, McDermott M, Barbaro NM, Shapiro SA, Solomon RA, Harbaugh R, Day AL. Neurosurgical education in a changing healthcare and regulatory environment: a consensus statement from 6 programs. Neurosurgery. 2017;80(4S):S75–82.CrossRefGoogle Scholar
  4. 4.
    Konakondla S, Fong R, Schirmer CM. Simulation training in neurosurgery: advances in education and practice. Adv Med Educ Pract. 2017;8:465–73.CrossRefGoogle Scholar
  5. 5.
    Harrop J, Lobel DA, Bendok B, Sharan A, Rezai AR. Developing a neurosurgical simulation-based educational curriculum: an overview. Neurosurgery. 2013;73(Suppl 1):25–9.CrossRefGoogle Scholar
  6. 6.
    Ray WZ, Ganju A, Harrop JS, Hoh DJ. Developing an anterior cervical diskectomy and fusion simulator for neurosurgical resident training. Neurosurgery. 2013;73(Suppl 1):100–6.CrossRefGoogle Scholar
  7. 7.
    Harrop J, Rezai AR, Hoh DJ, Ghobrial GM, Sharan A. Neurosurgical training with a novel cervical spine simulator: posterior foraminotomy and laminectomy. Neurosurgery. 2013;73(Suppl 1):94–9.CrossRefGoogle Scholar
  8. 8.
    Ghobrial GM, Anderson PA, Chitale R, Campbell PG, Lobel DA, Harrop J. Simulated spinal cerebrospinal fluid leak repair: an educational model with didactic and technical components. Neurosurgery. 2013;73(Suppl 1):111–5.CrossRefGoogle Scholar
  9. 9.
    Ghobrial GM, Balsara K, Maulucci CM, Resnick DK, Selden NR, Sharan AD, Harrop JS. Simulation training curricula for neurosurgical residents: cervical foraminotomy and durotomy repair modules. World Neurosurg. 2015;84(3):751-5.e1–7.CrossRefGoogle Scholar
  10. 10.
    Fargen KM, Arthur AS, Bendok BR, Levy EI, Ringer A, Siddiqui AH, Veznedaroglu E, Mocco J. Experience with a simulator-based angiography course for neurosurgical residents: beyond a pilot program. Neurosurgery. 2013;73(Suppl 1):46–50.CrossRefGoogle Scholar
  11. 11.
    Spiotta AM, Rasmussen PA, Masaryk TJ, Benzel EC, Schlenk R. Simulated diagnostic cerebral angiography in neurosurgical training: a pilot program. J Neurointerv Surg. 2013;5(4):376–81.CrossRefGoogle Scholar
  12. 12.
    Saratzis A, Calderbank T, Sidloff D, Bown MJ, Davies RS. Role of simulation in endovascular aneurysm repair (EVAR) training: a preliminary study. Eur J Vasc Endovasc Surg. 2017;53(2):193–8.CrossRefGoogle Scholar
  13. 13.
    Gosling AF, Kendrick DE, Kim AH, Nagavalli A, Kimball ES, Liu NT, Kashyap VS, Wang JC. Simulation of carotid artery stenting reduces training procedure and fluoroscopy times. J Vasc Surg. 2017;66(1):298–306.CrossRefGoogle Scholar
  14. 14.
    Pannell JS, Santiago-Dieppa DR, Wali AR, Hirshman BR, Steinberg JA, Cheung VJ, Oveisi D, Hallstrom J, Khalessi AA. Simulator-based angiography and endovascular neurosurgery curriculum: a longitudinal evaluation of performance following simulator-based angiography training. Cureus. 2016;8(8):e756.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Schirmer CM, Elder JB, Roitberg B, Lobel DA. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach. Neurosurgery. 2013;73(Suppl 1):66–73.CrossRefGoogle Scholar
  16. 16.
    Lobel DA, Elder JB, Schirmer CM, Bowyer MW, Rezai AR. A novel craniotomy simulator provides a validated method to enhance education in the management of traumatic brain injury. Neurosurgery. 2013;73(Suppl 1):57–65.CrossRefGoogle Scholar
  17. 17.
    Yudkowsky R, Luciano C, Banerjee P, Schwartz A, Alaraj A, Lemole GM Jr, Charbel F, Smith K, Rizzi S, Byrne R, Bendok B, Frim D. Practice on an augmented reality/haptic simulator and library of virtual brains improves residents’ ability to perform a ventriculostomy. Simul Healthc. 2013;8(1):25–31.CrossRefGoogle Scholar
  18. 18.
    Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, Bova F, Murad GJ. Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery. 2014;10(Suppl 4):576–81; discussion 581.CrossRefGoogle Scholar
  19. 19.
    Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A, Banerjee PP, Charbel FT. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery. 2015;11(Suppl 2):52–8.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosseau G, Bailes J, del Maestro R, Cabral A, Choudhury N, Comas O, Debergue P, De Luca G, Hovdebo J, Jiang D, Laroche D, Neubauer A, Pazos V, Thibault F, Diraddo R. The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery. Neurosurgery. 2013;73(Suppl 1):85–93.CrossRefGoogle Scholar
  21. 21.
    Thawani JP, Ramayya AG, Abdullah KG, Hudgins E, Vaughan K, Piazza M, Madsen PJ, Buch V, Sean Grady M. Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology. J Clin Neurosci. 2016;34:112–6.CrossRefGoogle Scholar
  22. 22.
    Gélinas-Phaneuf N, Choudhury N, Al-Habib AR, Cabral A, Nadeau E, Mora V, Pazos V, Debergue P, DiRaddo R, Del Maestro RF. Assessing performance in brain tumor resection using a novel virtual reality simulator. Int J Comput Assist Radiol Surg. 2014;9(1):1–9.CrossRefGoogle Scholar
  23. 23.
    Alotaibi FE, AlZhrani GA, Mullah MA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, Del Maestro RF. Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator. Neurosurgery. 2015;11(Suppl 2):89–98; discussion 98.Google Scholar
  24. 24.
    Azarnoush H, Alzhrani G, Winkler-Schwartz A, Alotaibi F, Gelinas-Phaneuf N, Pazos V, Choudhury N, Fares J, DiRaddo R, Del Maestro RF. Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection. Int J Comput Assist Radiol Surg. 2015;10(5):603–18.CrossRefGoogle Scholar
  25. 25.
    Choudhury N, Gélinas-Phaneuf N, Delorme S, Del Maestro R. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills. World Neurosurg. 2013;80(5):e9–19.CrossRefGoogle Scholar
  26. 26.
    Alotaibi FE, AlZhrani GA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, Del Maestro RF. Neurosurgical assessment of metrics including judgment and dexterity using the virtual reality simulator NeuroTouch (NAJD Metrics). Surg Innov. 2015;22(6):636–42.CrossRefGoogle Scholar
  27. 27.
    AlZhrani G, Alotaibi F, Azarnoush H, Winkler-Schwartz A, Sabbagh A, Bajunaid K, Lajoie SP, Del Maestro RF. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch. J Surg Educ. 2015;72(4):685–96.CrossRefGoogle Scholar
  28. 28.
    Shakur SF, Luciano CJ, Kania P, Roitberg BZ, Banerjee PP, Slavin KV, Sorenson J, Charbel FT, Alaraj A. Usefulness of a virtual reality percutaneous trigeminal rhizotomy simulator in neurosurgical training. Neurosurgery. 2015;11(Suppl 3):420–5; discussion 425.CrossRefGoogle Scholar
  29. 29.
    Weisz G, Smilowitz NR, Parise H, Devaud J, Moussa I, Ramee S, Reisman M, White CJ, Gray WA. Objective simulator-based evaluation of carotid artery stenting proficiency (from assessment of operator performance by the carotid stenting simulator study [ASSESS]). Am J Cardiol. 2013;112(2):299–306.CrossRefGoogle Scholar
  30. 30.
    Gasco J, Holbrook TJ, Patel A, Smith A, Paulson D, Muns A, Desai S, Moisi M, Kuo YF, Macdonald B, Ortega-Barnett J, Patterson JT. Neurosurgery simulation in residency training: feasibility, cost, and educational benefit. Neurosurgery. 2013;73(Suppl 1):39–45.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations