History of Simulation

  • Nabeel Saud Alshafai
  • Wafa Alduais
Part of the Comprehensive Healthcare Simulation book series (CHS)


As we believe in the statement of the philosopher Confucius “Study the past, if we would divine the future,” this chapter is dedicated to addressing the history of neurosurgical simulation. The objective of this chapter is to highlight the important historical background of simulation development over the years from the nonmedical era till it became one of the essential tools in neurosurgical training.


Simulation history Neurosurgical-historical background Neurosurgical simulation Neurosurgical training 


  1. 1.
    Smith R. The long history of gaming in military training. Simul Gaming. 2009;41:6–19.CrossRefGoogle Scholar
  2. 2.
    Murray HJR. A history of chess: the original. 1913th ed. New York: Skyhorse Pub; 2012.Google Scholar
  3. 3.
    Robison RA, Liu CY, Apuzzo ML. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg. 2011;76(5):419–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Moore KL. A history of anatomy: The post‐Vesalian era. Clinical Anatomy. 1998;11(4):284–284. CrossRefGoogle Scholar
  5. 5.
    Debernardi A, Sala E, D'aliberti G, Talamonti G, Franchini AF, Collice M. Alcmaeon of Croton. Neurosurgery. 2010;66(2):247–52.CrossRefGoogle Scholar
  6. 6.
    Bradley P. The history of simulation in medical education and possible future directions. Med Educ. 2006;40(3):254–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Ghasemzadeh N, Zafari AM. A brief journey into the history of the arterial pulse. Cardiol Res Pract. 2011;28:2011.Google Scholar
  8. 8.
    Potter P. Herophilus of Chalcedon: an assessment of his place in the history of anatomy. Bull Hist Med. 1976;50(1):45.Google Scholar
  9. 9.
    Wiltse LL, Pait TG. Herophilus of Alexandria (325–255 BC): the father of anatomy. Spine. 1998;23(17):1904–14.CrossRefGoogle Scholar
  10. 10.
    King LS. Doctors: the biography of medicine. JAMA. 1988;260(18):2729–30.CrossRefGoogle Scholar
  11. 11.
    Kunkler K. The role of medical simulation: an overview. Int J Med Rob Comput Assisted Surg. 2006;2(3):203–10.CrossRefGoogle Scholar
  12. 12.
    Limbrick DD Jr, Dacey RG Jr. Simulation in neurosurgery: possibilities and practicalities: foreword. Neurosurgery. 2013;73:S1–3.CrossRefGoogle Scholar
  13. 13.
    Aufderheide AC. The scientific study of mummies. Cambridge: Cambridge University Press; 2003.Google Scholar
  14. 14.
    By Veloso Salgado – NOVA Medical School | Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Public Domain.
  15. 15.
  16. 16.
    Rocca J. Galen on the brain: anatomical knowledge and physiological speculation in the second century AD. Studies in ancient medicine. 2003;26:1.Google Scholar
  17. 17.
    Le Floch-Prigent P, Delaval D. The discovery of the pulmonary circulation by Ibn al Nafis during the 13th century: an anatomical approach (543.9). FASEB J. 2014;28(1 Supplement):543–9.Google Scholar
  18. 18.
    Da Vinci L. The notebooks of Leonardo da Vinci. Courier Corporation; 2012.Google Scholar
  19. 19.
    Jones R. Leonardo da Vinci: anatomist. Br J Gen Pract. 2012;62(599):319-319. CrossRefGoogle Scholar
  20. 20.
    By Leonardo da Vinci.,, Public Domain, .Google Scholar
  21. 21.
    Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.CrossRefGoogle Scholar
  22. 22.
    Catani M, Sandrone S. Brain renaissance: from Vesalius to modern neuroscience. Oxford: Oxford University Press; 2015.Google Scholar
  23. 23.
    By Attributed to Jan van Calcar – Page xii of De humani corporis fabrica (1534 edition), showing portrait of Andreas Vesalius. Original scan of page cropped to show portrait alone, contrasted slightly to 70 in Microsoft Photo Editor. The original book from which the scan arises is a copy of the 1543 edition stored in the collection of the U.S. National Library of Medicine, a division of the National Institutes of Health (NIH)., Public Domain. Scholar
  24. 24.
    Meller G. A typology of simulators for medical education. J Digit Imaging. 1997;10:194–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Rosen KR. The history of medical simulation. J Crit Care. 2008;23(2):157–66.CrossRefGoogle Scholar
  26. 26.
    Cooper JB, Taqueti V. A brief history of the development of mannequin simulators for clinical education and training. Qual Saf Health Care. 2004;13(suppl 1):i11–8.CrossRefGoogle Scholar
  27. 27.
    Denson JS, Abrahamson S. A computer-controlled patient simulator. JAMA. 1969;208(3):504–8.CrossRefGoogle Scholar
  28. 28.
    Abrahamson S, Denson JS, Wolf RM. Effectiveness of a simulator in training anesthesiology residents. Qual Saf Health Care. 2004;13(5):395–7.CrossRefGoogle Scholar
  29. 29.
    Cooper JB, Taqueti V. A brief history of the development of mannequin simulators for clinical education and training. Postgrad Med J. 2008;84(997):563–70.CrossRefGoogle Scholar
  30. 30.
    By Gene Hobbs – Own work, CC BY-SA 3.0. .Google Scholar
  31. 31.
    Gaba DM, DeAnda A. A comprehensive anesthesia simulation environment: re-creating the operating room for research and training. Anesthesiology. 1988;69(3):387–94.CrossRefGoogle Scholar
  32. 32.
    Good ML, Lampotang S, Gibby G, Gravenstein JS. Critical events simulation for training in anesthesiology. J Clin Monit Comput. 1988;4:140.Google Scholar
  33. 33.
    Byrne AJ, Hilton PJ, Lunn JN. Basic simulations for anaesthetists a pilot study of the ACCESS system. Anaesthesia. 1994;49(5):376–81.CrossRefGoogle Scholar
  34. 34.
    Ashpole RD. Introducing Rowena: a simulator for neurosurgical training. Bull R Coll Surg Engl. 2015;97(7):299–301.CrossRefGoogle Scholar
  35. 35.
    Gillies DF, Williams CB. An interactive graphic simulator for the teaching of fibrendoscopic techniques. In: Marechal G, editor. EUROGRAPHICS 1987. Amsterdam: North Holland; 1987. p. 127–38.Google Scholar
  36. 36.
    Baillie J, Gillies DF, Cotton PB, Williams CB. Computer-simulation for basic ERCP training-a working model. In Gastrointestinal endoscopy; 1989 Mar 1 (Vol. 35, No. 2, pp. 177–177). 11830 Westline Industrial Dr, St Louis, Mo 63146–3318: Mosby-Year Book INC.Google Scholar
  37. 37.
    Phillips NI, John NW. Web-based surgical simulation for ventricular catheterization. Neurosurgery. 2000;46(4):933–7.Google Scholar
  38. 38.
    Sharpe R, Koval V, Ronco JJ, Dodek P, Wong H, Shepherd J, FitzGerald JM, Ayas NT. The impact of prolonged continuous wakefulness on resident clinical performance in the intensive care unit: a patient simulator study. Crit Care Med. 2010;38(3):766–70.CrossRefGoogle Scholar
  39. 39.
    Musacchio MJ, Smith AP, McNeal CA, Munoz L, Rothenberg DM, von Roenn KA, Byrne RW. Neuro-critical care skills training using a human patient simulator. Neurocrit Care. 2010;13(2):169–75.CrossRefPubMedGoogle Scholar
  40. 40.
    Gasco J, Patel A, Ortega-Barnett J, Branch D, Desai S, Kuo YF, Luciano C, Rizzi S, Kania P, Matuyauskas M, Banerjee P. Virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol Res. 2014;36(11):968–73.CrossRefGoogle Scholar
  41. 41.
    Acosta E, Liu A, Armonda R, Fiorill M, Haluck R, Lake C, Muniz G, Bowyer M. Burrhole simulation for an intracranial hematoma simulator. Stud Health Technol Inform. 2006;125:1.Google Scholar
  42. 42.
    Lobel DA, Elder JB, Schirmer CM, Bowyer MW, Rezai AR. A novel craniotomy simulator provides a validated method to enhance education in the management of traumatic brain injury. Neurosurgery. 2013;73:S57–65.CrossRefGoogle Scholar
  43. 43.
    Banerjee PP, Luciano CJ, Lemole Jr GM, Charbel FT, Oh MY. Accuracy of ventriculostomy catheter placement using a head-and hand-tracked high-resolution virtual reality simulator with haptic feedback. Journal of Neurosurgery. 2007;107(3):515–21.CrossRefGoogle Scholar
  44. 44.
    Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, Bova F, Murad GJ. Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Oper Neurosurg. 2014;10(4):565–76.CrossRefGoogle Scholar
  45. 45.
    Lemole GM Jr, Banerjee PP, Luciano C, Neckrysh S, Charbel FT. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery. 2007;61(1):142–9.CrossRefGoogle Scholar
  46. 46.
    Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, Lampotang S, Lizdas DE, Lombard G, Lister JR. Mixed-reality simulation for neurosurgical procedures. Neurosurgery. 2013;73(suppl_1):S138–45.CrossRefGoogle Scholar
  47. 47.
    Ng TP, Hui KP, Tan WC. Integrative haptic and visual interaction for simulation of PMMA injection during vertebroplasty. Stud Health Technol Inform. 2006;119:96–8.Google Scholar
  48. 48.
    Aboud E, Al-Mefty O, Yaşargil MG. New laboratory model for neurosurgical training that simulates live surgery. J Neurosurg. 2002;97(6):1367–72.CrossRefPubMedGoogle Scholar
  49. 49.
    Oliveira Magaldi M, Nicolato A, Godinho JV, Santos M, Prosdocimi A, Malheiros JA, Lei T, Belykh E, Almefty RO, Almefty KK, Preul MC. Human placenta aneurysm model for training neurosurgeons in vascular microsurgery. Oper Neurosurg. 2014;10(4):592–601.CrossRefGoogle Scholar
  50. 50.
    Kwok JC, Huang W, Leung WC, Chan SK, Chan KY, Leung KM, Chu AC, Lam AK. Human placenta as an ex vivo vascular model for neurointerventional research. J Neurointerv Surg. 2013:neurintsurg-2013.Google Scholar
  51. 51.
    Higurashi M, Qian Y, Zecca M, Park YK, Umezu M, Morgan MK. Surgical training technology for cerebrovascular anastomosis. J Clin Neurosci. 2014;21(4):554–8.CrossRefGoogle Scholar
  52. 52.
    Fargen KM, Arthur AS, Bendok BR, Levy EI, Ringer A, Siddiqui AH, Veznedaroglu E, Mocco J. Experience with a simulator-based angiography course for neurosurgical residents: beyond a pilot program. Neurosurgery. 2013;73(suppl_1):S46–50.CrossRefGoogle Scholar
  53. 53.
    Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, Watanabe E. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 2015;83(3):351–61.CrossRefPubMedGoogle Scholar
  54. 54.
    Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov. 2011;18(3):294–306.CrossRefPubMedGoogle Scholar
  55. 55.
    Coelho G, Warf B, Lyra M, Zanon N. Anatomical pediatric model for craniosynostosis surgical training. Childs Nerv Syst. 2014;30(12):2009–14.CrossRefGoogle Scholar
  56. 56.
    Mattei TA, Frank C, Bailey J, Lesle E, Macuk A, Lesniak M, Patel A, Morris MJ, Nair K, Lin JJ. Design of a synthetic simulator for pediatric lumbar spine pathologies. J Neurosurg Pediatr. 2013;12(2):192–201.CrossRefPubMedGoogle Scholar
  57. 57.
    Anil SM, Kato Y, Hayakawa M, Yoshida K, Nagahisha S, Kanno T. Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma. min-Minimally Invasive. Neurosurgery. 2007;50(02):65–70.Google Scholar
  58. 58.
    Delorme S, Laroche D, DiRaddo R, Del Maestro RF. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Oper Neurosurg. 2012;71(suppl_1):ons32–42.CrossRefGoogle Scholar
  59. 59.
    Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S. Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol. 2012;126(7):663–9.CrossRefGoogle Scholar
  60. 60.
    Radetzky A, Rudolph M, Starkie S, Davies B, Auer LM. ROBO-SIM: a simulator for minimally invasive neurosurgery using an active manipulator. Stud Health Technol Inform. 2000;77:1165–9.Google Scholar
  61. 61.
    Freudenstein D, Bartz D, Skalej M, Duffner F. New virtual system for planning of neuroendoscopic interventions. Comput Aided Surg. 2001;6(2):77–84.CrossRefGoogle Scholar
  62. 62.
    Delorme S, Laroche D, DiRaddo R, Del Maestro RF. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Oper Neurosurg. 2012;71(suppl_1):ons32–42.CrossRefGoogle Scholar
  63. 63.
    Boudou C, Balosso J, Estève F, Elleaume H. Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours. Phys Med Biol. 2005;50(20):4841.CrossRefGoogle Scholar
  64. 64.
    Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, Lowenstein JR, Taylor DD, Wu X, Yu C. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914–36.CrossRefPubMedGoogle Scholar
  65. 65.
    Hamamoto Y, Manabe T, Nishizaki O, Takahashi T, Isshiki N, Murayama S, Nishina K, Umeda M. Influence of collimator size on three-dimensional conformal radiotherapy of the cyberknife. Radiat Med. 2004;22(6):442–8.Google Scholar
  66. 66.
    Nowinski WL, Chua BC, Volkau I, Puspitasari F, Marchenko Y, Runge VM, Knopp MV. Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3-and 7-tesla scans. J Neurosurg. 2010;113(6):1234–41.CrossRefGoogle Scholar
  67. 67.
    Noordmans HJ, Van Rijen PC, Van Veelen CW, Viergever MA, Hoekema R. Localization of implanted EEG electrodes in a virtual-reality environment. Comput Aided Surg. 2001;6(5):241–58.CrossRefGoogle Scholar
  68. 68.
    Pieters TA, Conner CR, Tandon N. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes. J Neurosurg. 2013;118(5):1086–97.CrossRefGoogle Scholar
  69. 69.
    Barrows HS, Abrahamson S. The programmed patient: a technique for appraising student performance in clinical neurology. Acad Med. 1964;39(8):802–5.Google Scholar
  70. 70.
    Wallace P. Following the threads of an innovation: the history of standardized patients in medical education. Caduceus (Springfield, Ill). 1997;13(2):5.Google Scholar
  71. 71.
    Musacchio MJ, Smith AP, McNeal CA, Munoz L, Rothenberg DM, von Roenn KA, Byrne RW. Neuro-critical care skills training using a human patient simulator. Neurocrit Care. 2010;13(2):169–75.CrossRefGoogle Scholar
  72. 72.
    Ullrich WF. A history of simulation: part II-early days. Military Simulation & Training. 2008. p. 27–30.Google Scholar
  73. 73.
    Singh H, Kalani M, Acosta-Torres S, El Ahmadieh TY, Loya J, Ganju A. History of simulation in medicine: from Resusci Annie to the Ann Myers Medical Center. Neurosurgery. 2013;73:S9–14.CrossRefGoogle Scholar
  74. 74.
    The Link Trainer. Stark Ravings Web site.
  75. 75.
  76. 76.
    A brief history and lineage of our CAE-Link Silver Spring operation.
  77. 77.
    Setting the Standard in Simulation and Training for 80+ Years.
  78. 78.
    Satava RM. Historical review of surgical simulation—a personal perspective. World J Surg. 2008;32(2):141–8.CrossRefGoogle Scholar
  79. 79.
    Lanier J. Virtual reality: the promise of the future. Interact Learn Int. 1992;8(4):275–9.Google Scholar
  80. 80.
    By Canticle at en.wikipedia, CC BY-SA 3.0.
  81. 81.
    Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757–67.CrossRefGoogle Scholar
  82. 82.
    Satava RM. Virtual reality surgical simulator. Surg Endosc. 1993;7(3):203–5.CrossRefGoogle Scholar
  83. 83.
    Seymour NE, Gallagher AG, Roman SA, O’brien MK, Bansal VK, Andersen DK, Satava RM. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236(4):458.CrossRefPubMedGoogle Scholar
  84. 84.
    Edmond CV, Wiet GJ, Bolger LB. Virtual environments: surgical simulation in otolaryngology. Otolaryngol Clin N Am. 1998;31(2):369–81.CrossRefGoogle Scholar
  85. 85.
    Datta V, Mackay S, Mandalia M, Darzi A. The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J Am Coll Surg. 2001;193(5):479–85.CrossRefGoogle Scholar
  86. 86.
    Mylonas G, Darzi A, Yang GZ. Gaze contingent depth recovery and motion stabilization for minimally invasive robotic surgery. Medical Imaging and Augmented Reality. 2004. p. 311–9.Google Scholar
  87. 87.
    Albani JM, Lee DI. Virtual reality-assisted robotic surgery simulation. J Endourol. 2007;21(3):285–7.CrossRefGoogle Scholar
  88. 88.
    Spicer MA, Van Velsen M, Caffrey JP, Apuzzo ML. Virtual reality neurosurgery: a simulator blueprint. Neurosurgery. 2004;54(4):783–98.CrossRefGoogle Scholar
  89. 89. Scholar
  90. 90.
    Alaraj A, Charbel FT, Birk D, Tobin M, Luciano C, Banerjee PP, Rizzi S, Sorenson J, Foley K, Slavin K, Roitberg B. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery. 2013;72(suppl_1):A115–23.CrossRefGoogle Scholar
  91. 91.
    Rodt T, Schlesinger A, Schramm A, Diensthuber M, Rittierodt M, Krauss JK. 3D visualization and simulation of frontoorbital advancement in metopic synostosis. Childs Nerv Syst. 2007;23(11):1313–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nabeel Saud Alshafai
    • 1
  • Wafa Alduais
    • 1
  1. 1.Alshafai Neurosurgical Academy A.N.ATorontoCanada

Personalised recommendations