Skip to main content

Biology of the Leishmania−Sand Fly Interaction

  • Chapter
  • First Online:
Brazilian Sand Flies

Abstract

Leishmaniasis is a spectrum of diseases transmitted by sand-fly vector caused by a protozoa parasite from the genus Leishmania (Trypanosomatida: Trypanosomatidae) This vector-borne disease is transmitted to humans exclusively through sand-fly bites. The Leishmania genus was given to honor Sir William Boog Leishman, an assistant professor of pathology in the British Army Medical School, who discovered the parasite for the first time on a slide spleen smear in 1903.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler S (1938) Factors determining the Behaviour of Leishmania sp. in Sandflies. Harefuah 14

    Google Scholar 

  • Adler S (1964) Leishmania. Adv Parasitol 2:35–96

    Google Scholar 

  • Ahmed SB, Kaabi B, Chelbi I, Derbali M, Cherni S, Laouini D, Zhioua E (2010) Lack of protection of pre-immunization with saliva of long-term colonized Phlebotomus papatasi against experimental challenge with Leishmania major and saliva of wild-caught P. papatasi. Am J Trop Med Hyg 83:512–514. PM:20810812

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, Seitz AE, Lawyer P, Garfield M, Pham M, Valenzuela JG (2006) Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 15:7–52

    Google Scholar 

  • Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED, Valenzuela JG, Charlab R, Barral-Netto M, Ribeiro JM (2000) Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg 62:740–745. PM:11304066

    Article  CAS  PubMed  Google Scholar 

  • Bates PA (2008) Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 11:340–344. PM:18625337

    Article  PubMed  PubMed Central  Google Scholar 

  • Beach R, Kiilu G, Leeuwenburg J (1985) Modifications of sand fly biting behavior by Leishmania leads to increased parasite transmission. Am J Trop Med Hyg 34:278–282

    Article  CAS  PubMed  Google Scholar 

  • Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, Sacks DL (1998) Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188:1941–1953. PM:9815271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165:969–977. PM:10878373

    Article  CAS  PubMed  Google Scholar 

  • Berner R, Rudin W, Hecker H (1983) Peritrophic membranes and protease activity in the midgut of the malaria mosquito, Anopheles stephensi (Liston) (Insecta: Diptera) under normal and experimental conditions. J Ultrastruct Res 83:195–204

    Article  CAS  PubMed  Google Scholar 

  • Bezerra HS, Teixeira MJ (2001) Effect of Lutzomyia whitmani (Diptera: Psychodidae) salivary gland lysates on Leishmania (Viannia) braziliensis infection in BALB/c mice. Mem Inst Oswaldo Cruz 96:349–351. PM:11313642

    Article  CAS  PubMed  Google Scholar 

  • Billingsley PF, Rudin W (1992) The role of the mosquito peritrophic membrane in blood meal digestion and infectivity of Plasmodium species. J Parasitol 78:430–440. PM:1597785

    Article  CAS  PubMed  Google Scholar 

  • Borovsky D, Schlein Y (1987) Trypsin and chymotrypsin-like enzymes of the sand fly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol 1:235–242. PM:2979536

    Article  CAS  PubMed  Google Scholar 

  • Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, Svobodova M, Beverley SM, Spath G, Brun R (2004) Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun 72:7140–7146. PM:15557638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Panunzio M, Sacks DL (1996) Deficiency in beta1,3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sand fly interaction. J Biol Chem 271:20573–20579. PM:8702802

    Article  CAS  PubMed  Google Scholar 

  • da Silva RP, Hall BF, Joiner KA, Sacks DL (1989) CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages. J Immunol 143:617–622. PM:2525590

    PubMed  Google Scholar 

  • Elnaiem DA, Hassan HK, Ward RD (1997) Phlebotomine sandflies in a focus of visceral leishmaniasis in a border area of eastern Sudan. Ann Trop Med Parasitol 91:307–318. PM:9229023

    Article  CAS  PubMed  Google Scholar 

  • Elnaiem DE, Meneses C, Slotman M, Lanzaro GC (2005) Genetic variation in the sand fly salivary protein, SP-15, a potential vaccine candidate against Leishmania major. Insect Mol Biol 14:145–150. PM:15796747

    Article  CAS  PubMed  Google Scholar 

  • Feng LC (1951) The role of the peritrophic membrane in leishmania and Trypanosome infections of sandflies. Pek Nat Hist Bull 19:327–334

    Google Scholar 

  • Ferreira VP, Fazito VV, Pangburn MK, Abdeladhim M, Mendes-Sousa AF, Coutinho-Abreu IV, Rasouli M, Brandt EA, Meneses C, Lima KF (2016) SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis. Sci Rep 6:19300. PM:26758086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemetchu T (1974) The morphology and fine structure of the midgut and peritrophic membrane fo the adult female, Phlebotomus longipes Parrot and Martin (Diptera: Psychodidae). Ann Trop Med Parasitol 68:111–124

    Article  CAS  PubMed  Google Scholar 

  • Hosseini-Vasoukolaei N, Idali F, Khamesipour A, Yaghoobi-Ershadi MR, Kamhawi S, Valenzuela JG, Edalatkhah H, Arandian MH, Mirhendi H, Emami S (2016) Differential expression profiles of the salivary proteins SP15 and SP44 from Phlebotomus papatasi. Parasit Vectors 9:357. PM:27342811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RF, Ardeshir F, Reese RT (1986) Conservation and antigenicity of N-terminal sequences of GP185 from different Plasmodium falciparum isolates. Gene 46:197–205

    Article  CAS  PubMed  Google Scholar 

  • Kamhawi S (2000) The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect 2:1765–1773. PM:11137049

    Article  CAS  PubMed  Google Scholar 

  • Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D (2000a) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290:1351–1354. PM:11082061

    Article  CAS  PubMed  Google Scholar 

  • Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL (2000b) The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology 121(Pt 1):25–33. PM:11085222

    Article  CAS  PubMed  Google Scholar 

  • Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela JG (2003) A role for insect galectins in parasite survival. Cell 119:329–341

    Article  Google Scholar 

  • Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela JG (2004) A role for insect galectins in parasite survival. Cell 119:329–341. PM:15543683

    Article  CAS  PubMed  Google Scholar 

  • Killick-Kendrick RR, Leaney AJ, Ready PD, Molyneux DH (1977) Leishmania in Phlebotominae sandflies. IV. The transmission of Leishmania mexicana amazonensis to hamster by bite of experimentally infected Lutzomyia longipalpis. Proc R Soc Lond 196:105–115

    Article  CAS  PubMed  Google Scholar 

  • Killick-Kendrick R, Molyneux DH (1981) Transmission of leishmaniasis by the bite of phlebotomine sandflies: possible mechanisms. Trans R Soc Trop Med Hyg 75:152–154. PM:7268854

    Article  CAS  PubMed  Google Scholar 

  • Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, Lawyer P, Fay MP, Kamhawi S, Sacks D (2008) Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci U S A 105:10125–10130. PM:18626016

    Article  PubMed  PubMed Central  Google Scholar 

  • Lainson R, Shaw JJ (1979) The role of animals in the epidemiology of South American leishmaniasis. pp 1–116 In: Lumsden WHR, Evans DA (eds) The Biology of the Kinetoplastida. Academic Press London, 738p

    Google Scholar 

  • Laurenti MD, da Matta VL, Pernichelli T, Secundino NF, Pinto LC, Corbett CE, Pimenta PP (2009a) Effects of salivary gland homogenate from wild-caught and laboratory-reared Lutzomyia longipalpis on the evolution and immunomodulation of Leishmania (Leishmania) amazonensis infection. Scand J Immunol 70:389–395. PM:19751274

    Article  CAS  PubMed  Google Scholar 

  • Laurenti MD, Silveira VM, Secundino NF, Corbett CE, Pimenta PP (2009b) Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania (Leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis. Parasitol Int 58:220–226. PM:19454323

    Article  PubMed  Google Scholar 

  • Lawyer PG, Young DG, Butler JF, Akin DE (1987) Development of Leishmania mexicana in Lutzomyia diabolica and Lutzomyia shannoni (Diptera: Psychodidae). J Med Entomol 24:347–355

    Article  CAS  PubMed  Google Scholar 

  • Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech DK, Roberts CR (1990) Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 43:31–43

    Article  CAS  PubMed  Google Scholar 

  • Malta J, Martins GF, Weng JL, Fernandes KM, Munford ML, Ramalho-Ortigao M (2016) Effects of specific antisera targeting peritrophic matrix-associated proteins in the sand fly vector Phlebotomus papatasi. Acta Trop 159:161–169. PM:27012717

    Article  CAS  PubMed  Google Scholar 

  • Mbow ML, Bleyenberg JA, Hall LR, Titus RG (1998) Phlebotomus papatasi sand fly salivary gland lysate downregulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol 161(10):5571–5577

    PubMed  CAS  Google Scholar 

  • McConville MJ, Blackwell JM (1991) Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem 266:15170–15179. PM:1831200

    PubMed  CAS  Google Scholar 

  • Miller N, Lehane MJ (1993) Peritrophic membranes, cell surface molecules and parasite tropisms within arthropod vectors. Parasitol Today 9:45–50. PM:15463702

    Article  CAS  PubMed  Google Scholar 

  • Miranda JC, Secundino NF, Nieves E, Souza AP, Bahia AC, Prates DB, Pimenta RN, Pinto LC, Barral A, Pimenta PFP (2008) Studies of the influence of the presence of domestic animals on increasing the transmission probabilities of leishmaniasis. Ann Med Entomol 17:9–15

    Google Scholar 

  • Myskova J, Svobodova M, Beverley SM, Volf P (2007) A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect 9:317–324. PM:17307009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves E, Pimenta PF (2000) Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae). J Med Entomol 37:134–140. PM:15218917

    Article  CAS  PubMed  Google Scholar 

  • Nieves E, Pimenta PF (2002) Influence of vertebrate blood meals on the development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae). Am J Trop Med Hyg 67:640–647. PM:12518856

    Article  PubMed  Google Scholar 

  • Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG (2008) Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl Trop Dis 2:e226. PM:18414648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoa V, Oliveira PL, Dansa-Petretski M, Silva JR, Alvarenga PH, Jacobs-Lorena M, Lemos FJ (2002) Aedes aegypti peritrophic matrix and its interaction with heme during blood digestion. Insect Biochem Mol Biol 32:517–523. PM:11891128

    Article  CAS  PubMed  Google Scholar 

  • Peters W (1992) Peritrophic membranes. Springer, New York

    Book  Google Scholar 

  • Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321:970–974. PM:18703742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimenta PF, da Silva RP, Sacks DL, da Silva PP (1989) Cell surface nanoanatomy of Leishmania major as revealed by fracture-flip. A surface meshwork of 44 nm fusiform filaments identifies infective developmental stage promastigotes. Eur J Cell Biol 48(2):180–190

    PubMed  CAS  Google Scholar 

  • Pimenta PF, Saraiva EM, Sacks DL (1991) The comparative fine structure and surface glycoconjugate expression of three life stages of Leishmania major. Exp Parasitol 72(2):191–204

    Article  CAS  PubMed  Google Scholar 

  • Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL (1992) Stage-specific adhesion of Leishmania promastigotes to the sand fly midgut. Science 256:1812–1815. PM:1615326

    Article  CAS  PubMed  Google Scholar 

  • Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, Beverley SM, Turco SJ, Sacks DL (1994) Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A 91:9155–9159. PM:8090785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimenta PF, McConville MJ, Schneider P, Turco SJ (1995) Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med 181(2):685–697

    Article  PubMed  Google Scholar 

  • Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL (1997) A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 115(Pt 4):359–369. PM:9364562

    Article  PubMed  Google Scholar 

  • Pruzinova K, Sadlova J, Seblova V, Homola M, Votypka J, Volf P (2015) Comparison of blood meal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PLoS One 10:e0128203. PM:26030610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puentes SM, da Silva RP, Sacks DL, Hammer CH, Joiner KA (1990) Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9. J Immunol 145:4311–4316. PM:2147941

    PubMed  CAS  Google Scholar 

  • Ribeiro JM, Schneider M, Guimaraes JA (1995) Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus. Biochem J 308(Pt 1):243–249. PM:7755571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards AG, Richards PA (1977) The peritrophic membranes of insects. Annu Rev Entomol 22:219–240. PM:319739

    Article  PubMed  Google Scholar 

  • Rogers ME, Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog 3:e91. PM:17604451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sand fly Lutzomyia longipalpis. Parasitology 124:495–507. PM:12049412

    Article  CAS  PubMed  Google Scholar 

  • Rogers ME, Ilg T, Nikolaev AV, Ferguson MA, Bates PA (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430:463–467. PM:15269771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacks DL, Kenney RT, Kreutzer RD, Jaffe CL, Gupta AK, Sharma MC, Sinha SP, Neva FA, Saran R (1995) Indian kala-azar caused by Leishmania tropica. Lancet 345(8955):959–961

    Article  CAS  PubMed  Google Scholar 

  • Sacks DL (2001) Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3:189–196. PM:11298643

    Article  CAS  PubMed  Google Scholar 

  • Sacks DL, da Silva RP (1987) The generation of infective stage Leishmania major promastigotes is associated with the cell-surface expression and release of a developmentally regulated glycolipid. J Immunol 139:3099–3106. PM:3312412

    PubMed  CAS  Google Scholar 

  • Sacks DL, Perkins PV (1984) Identification of an infective stage of Leishmania promastigotes. Science 223:1417–1419. PM:6701528

    Article  CAS  PubMed  Google Scholar 

  • Sacks DL, Hieny S, Sher A (1985) Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol 135:564–569. PM:2582050

    PubMed  CAS  Google Scholar 

  • Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, Beverley SM (2000) The role of phosphoglycans in Leishmania-sand fly interactions. Proc Natl Acad Sci U S A 97:406–411. PM:10618431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva EM, Pimenta PF, Brodin TN, Rowton E, Modi GB, Sacks DL (1995) Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major in Phlebotomus papatasi. Parasitology 111(Pt 3):275–287. PM:7567096

    Article  CAS  PubMed  Google Scholar 

  • Schlein Y, Borut S, Greenblatt CL (1987) Development of sand fly forms of Leishmania major in sucrose solutions. J Parasitol 73:797–805. PM:3625431

    Article  CAS  PubMed  Google Scholar 

  • Schlein Y, Schnur LF, Jacobson RL (1990) Released glycoconjugate of indigenous Leishmania major enhances survival of a foreign L. major in Phlebotomus papatasi. Trans R Soc Trop Med Hyg 84:353–355. PM:2260168

    Article  CAS  PubMed  Google Scholar 

  • Schlein Y, Jacobson RL, Shlomai J (1991) Chitinase secreted by Leishmania functions in the sand fly vector. Proc Biol Sci 245:121–126. PM:1682935

    Article  CAS  PubMed  Google Scholar 

  • Schlein Y, Jacobson RL, Messer G (1992) Leishmania infections damage the feeding mechanism of the sand fly vector and implement parasite transmission by bite. Proc Natl Acad Sci U S A 89:9944–9948. PM:1409724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secundino NF, Eger-Mangrich I, Braga EM, Santoro MM, Pimenta PF (2005) Lutzomyia longipalpis peritrophic matrix: formation, structure, and chemical composition. J Med Entomol 42:928–938. PM:16465730

    Article  CAS  PubMed  Google Scholar 

  • Secundino N, Kimblin N, Peters NC, Lawyer P, Capul AA, Beverley SM, Turco SJ, Sacks D (2010) Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies. Cell Microbiol 12:906–918. PM:20088949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secundino NF, de Freitas VC, Monteiro CC, Pires AC, David BA, Pimenta PF (2012) The transmission of Leishmania infantum chagasi by the bite of the Lutzomyia Longipalpis to two different vertebrates. Parasit Vectors 5:20. PM:22260275

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahabuddin M, Toyoshima T, Aikawa M, Kaslow DC (1993) Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc Natl Acad Sci U S A 90:4266–4270. PM:8483942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakarian AM, Dwyer DM (1998) The Ld Cht1 gene encodes the secretory chitinase of the human pathogen Leishmania donovani. Gene 208:315–322. PM:9524285

    Article  CAS  PubMed  Google Scholar 

  • Shakarian AM, Dwyer DM (2000) Pathogenic leishmania secrete antigenically related chitinases which are encoded by a highly conserved gene locus. Exp Parasitol 94:238–242. PM:10831391

    Article  CAS  PubMed  Google Scholar 

  • Shortt HE, Swaminath CS (1928) The method of feeding of Phlebotomus argentipes with relation to its bearing on the transmission of Kala-azar. Indian J Med Res 15:827–836. https://books.google.com.br/books?id=oK_6OwAACAAJ

    Google Scholar 

  • Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, Pimenta PF, Turco SJ (2002) Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Mol Biochem Parasitol 121:213–224. PM:12034455

    Article  CAS  PubMed  Google Scholar 

  • Soares RP, Cardoso TL, Barron T, Araujo MS, Pimenta PF, Turco SJ (2005) Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis. Int J Parasitol 35:245–253. PM:15722076

    Article  CAS  PubMed  Google Scholar 

  • Stierhof YD, Bates PA, Jacobson RL, Rogers ME, Schlein Y, Handman E (1999) Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors. Eur J Cell Biol 78:675–689

    Article  CAS  PubMed  Google Scholar 

  • Svarovska A, Ant TH, Seblova V, Jecna L, Beverley SM, Volf P (2010) Leishmania major glycosylation mutants require phosphoglycans (lpg2-) but not lipophosphoglycan (lpg1-) for survival in permissive sand fly vectors. PLoS Negl Trop Dis 4:e580–PM:20084096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira C, Gomes R, Collin N, Reynoso D, Jochim R, Oliveira F, Seitz A, Elnaiem DE, Caldas A, de Souza AP, Brodskyn CI, de Oliveira CI, Mendonca I, Costa CH, Volf P, Barral A, Kamhawi S, Valenzuela JG (2010) Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl Trop Dis 4(3):e638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellam RL (1996) The peritrophic matrix, vol 1. Chapman & Hall, London, pp 86–114

    Google Scholar 

  • Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200. https://doi.org/10.1146/annurev.en.35.010190.001145

    Article  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B Comp Biochem 109:1–62

    Article  Google Scholar 

  • Titus RG, Ribeiro JM (1988) Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239:1306–1308. PM:3344436

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan R (2004) Leishmania parasites (Kinetoplastida: Trypanosomatidae) reversibly inhibit visceral muscle contractions in hemimetabolous and holometabolous insects. J Invertebr Pathol 87:123–128. PM:15579321

    Article  PubMed  Google Scholar 

  • Vaidyanathan R (2005) Isolation of a myoinhibitory peptide from Leishmania major (Kinetoplastida: Trypanosomatidae) and its function in the vector sand fly Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol 42:142–152. PM:15799523

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks DL, Ribeiro JM (2001) Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194:331–342. PM:11489952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela JG (2002) High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem Mol Biol 32(10):1199–1209

    Article  CAS  PubMed  Google Scholar 

  • van ZG KM, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173:6521–6525. PM:15557140

    Article  Google Scholar 

  • Volf P, Tesarova P, Nohynkova EN (2000) Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Med Vet Entomol 14:251–256. PM:11016431

    Article  CAS  PubMed  Google Scholar 

  • Volf P, Hajmova M, Sadova J, Votypka J (2004) Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol 34:1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Walters LL, Modi GB, Tesh RB, Burrage T (1987) Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abonnenci (Diptera: Psychodidae). Am J Trop Med Hyg 36(2):294–314

    Article  CAS  PubMed  Google Scholar 

  • Walters LL, Modi GB, Chaplin GL, Tesh RB (1989) Ultrastructural development of Leishmania chagasi in its vector Lutzomyia longipalpis (Diptera: Psychodidae). Am J Trop Med Hyg 41(3):295–317

    Article  CAS  PubMed  Google Scholar 

  • Walters LL, Irons KP, Modi GB, Tesh RB (1992) Refractory barriers in the sand fly Phlebotomus papatasi (Diptera: Psychodidae) to infection with Leishmania panamensis. Am J Trop Med Hyg 46:211–228. PM:1539756

    Article  CAS  PubMed  Google Scholar 

  • Warburg A, Hamada GS, Schlein Y, Shire D (1986) The effect of post-blood-meal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. Am J Trop Med Hyg 35:926–930

    Article  CAS  PubMed  Google Scholar 

  • Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F (1994) Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans R Soc Lond Ser B Biol Sci 345(1312):223–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors Paulo F. P. Pimenta and Nágila F. C. Secundino received financial support from Fiocruz, CNPq e Fapemig.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pimenta, P.F.P., de Freitas, V.C., Monteiro, C.C., Pires, A.C.M.A., Secundino, N.F.C. (2018). Biology of the Leishmania−Sand Fly Interaction. In: Rangel, E., Shaw, J. (eds) Brazilian Sand Flies . Springer, Cham. https://doi.org/10.1007/978-3-319-75544-1_6

Download citation

Publish with us

Policies and ethics